Role of Fe and Mn in organo-mineral-microbe interactions: evidence of carbon stabilization and transformation of organic matter leading to carbon greenhouse gas emissions.
IF 2 4区 生物学Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Andrew Elohim Laloo, Abhishek Gupta, Valeria Verrone, Rama Kant Dubey
{"title":"Role of Fe and Mn in organo-mineral-microbe interactions: evidence of carbon stabilization and transformation of organic matter leading to carbon greenhouse gas emissions.","authors":"Andrew Elohim Laloo, Abhishek Gupta, Valeria Verrone, Rama Kant Dubey","doi":"10.1093/lambio/ovaf044","DOIUrl":null,"url":null,"abstract":"<p><p>Up to 90% of organic matter (OM) in soils and sediments are stabilized and protected against microbial decomposition through organo-mineral interactions, formation of soil aggregates, pH and oxygen availability. In soils and sediment systems OM is associated with mineral constituents promoting carbon persistence and sequestration of which iron (Fe) and manganese (Mn) are crucial components. Under anoxic condition, microbes couple the decomposition of OM to the oxidative/reductive transformation of Fe/Mn minerals leading to carbon greenhouse gas (C-GHG) emissions (i.e., CH4 and CO2). Although these organo-mineral-microbe interactions have been observed for decades, the bio-geochemical mechanisms governing the switch from OM stability toward OM degradation are not fully understood. Interest in this field have been growing steadily given the interest in global warming caused by OM decomposition leading to C-GHG emissions. This review emphasizes the dual role of Fe/Mn minerals in both OM stability and decomposition. Additionally, we synthesize the conceptual understanding of how Fe/Mn minerals govern OM dynamics and the resultant C-GHG emissions via microbial-mediated carbon transformation. We highlight the need for interdisciplinary research to better understand organo-Fe/Mn mineral-microbial interactions to develop management handles for climate mitigation strategies.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf044","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Up to 90% of organic matter (OM) in soils and sediments are stabilized and protected against microbial decomposition through organo-mineral interactions, formation of soil aggregates, pH and oxygen availability. In soils and sediment systems OM is associated with mineral constituents promoting carbon persistence and sequestration of which iron (Fe) and manganese (Mn) are crucial components. Under anoxic condition, microbes couple the decomposition of OM to the oxidative/reductive transformation of Fe/Mn minerals leading to carbon greenhouse gas (C-GHG) emissions (i.e., CH4 and CO2). Although these organo-mineral-microbe interactions have been observed for decades, the bio-geochemical mechanisms governing the switch from OM stability toward OM degradation are not fully understood. Interest in this field have been growing steadily given the interest in global warming caused by OM decomposition leading to C-GHG emissions. This review emphasizes the dual role of Fe/Mn minerals in both OM stability and decomposition. Additionally, we synthesize the conceptual understanding of how Fe/Mn minerals govern OM dynamics and the resultant C-GHG emissions via microbial-mediated carbon transformation. We highlight the need for interdisciplinary research to better understand organo-Fe/Mn mineral-microbial interactions to develop management handles for climate mitigation strategies.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.