James Morrissey, Gianmarco Barberi, Benjamin Strain, Pierantonio Facco, Cleo Kontoravdi
{"title":"NEXT-FBA: A hybrid stoichiometric/data-driven approach to improve intracellular flux predictions.","authors":"James Morrissey, Gianmarco Barberi, Benjamin Strain, Pierantonio Facco, Cleo Kontoravdi","doi":"10.1016/j.ymben.2025.03.010","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-scale metabolic models (GEMs) have been widely utilized to understand cellular metabolism. The application of GEMs has been advanced by computational methods that enable the prediction and analysis of intracellular metabolic states. However, the accuracy and biological relevance of these predictions often suffer from the many degrees of freedom and scarcity of available data to constrain the models adequately. Here, we introduce NEXT-FBA (Neural-net EXtracellular Trained Flux Balance Analysis), a novel computational methodology that addresses these limitations by utilizing exometabolomic data to derive biologically relevant constraints for intracellular fluxes in GEMs. We achieve this by training artificial neural networks (ANNs) with exometabolomic data from Chinese hamster ovary (CHO) cells and correlating it with <sup>13</sup>C-labeled intracellular fluxomic data. By capturing the underlying relationships between exometabolomics and cell metabolism, NEXT-FBA predicts upper and lower bounds for intracellular reaction fluxes to constrain GEMs. We demonstrate the efficacy of NEXT-FBA across several validation experiments, where it outperforms existing methods in predicting intracellular flux distributions that align closely with experimental observations. Furthermore, a case study demonstrates how NEXT-FBA can guide bioprocess optimization by identifying key metabolic shifts and refining flux predictions to yield actionable process and metabolic engineering targets. Overall, NEXT-FBA aims to improve the accuracy and biological relevance of intracellular flux predictions in metabolic modelling for bioprocess optimization, with minimal input data requirements for pre-trained models.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.03.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genome-scale metabolic models (GEMs) have been widely utilized to understand cellular metabolism. The application of GEMs has been advanced by computational methods that enable the prediction and analysis of intracellular metabolic states. However, the accuracy and biological relevance of these predictions often suffer from the many degrees of freedom and scarcity of available data to constrain the models adequately. Here, we introduce NEXT-FBA (Neural-net EXtracellular Trained Flux Balance Analysis), a novel computational methodology that addresses these limitations by utilizing exometabolomic data to derive biologically relevant constraints for intracellular fluxes in GEMs. We achieve this by training artificial neural networks (ANNs) with exometabolomic data from Chinese hamster ovary (CHO) cells and correlating it with 13C-labeled intracellular fluxomic data. By capturing the underlying relationships between exometabolomics and cell metabolism, NEXT-FBA predicts upper and lower bounds for intracellular reaction fluxes to constrain GEMs. We demonstrate the efficacy of NEXT-FBA across several validation experiments, where it outperforms existing methods in predicting intracellular flux distributions that align closely with experimental observations. Furthermore, a case study demonstrates how NEXT-FBA can guide bioprocess optimization by identifying key metabolic shifts and refining flux predictions to yield actionable process and metabolic engineering targets. Overall, NEXT-FBA aims to improve the accuracy and biological relevance of intracellular flux predictions in metabolic modelling for bioprocess optimization, with minimal input data requirements for pre-trained models.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.