Investigation of the anti-inflammatory, anti-oxidant and anti-apoptotic activity of 18β- glycyrrhetinic-acid on the model of LPS-induced lung injury in rats

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Selina Aksak Karamese , Volkan Gelen , Gulfem Nur Yildiz , Kevser Albayrak , Semin Gedikli , Adem Kara , Murat Karamese
{"title":"Investigation of the anti-inflammatory, anti-oxidant and anti-apoptotic activity of 18β- glycyrrhetinic-acid on the model of LPS-induced lung injury in rats","authors":"Selina Aksak Karamese ,&nbsp;Volkan Gelen ,&nbsp;Gulfem Nur Yildiz ,&nbsp;Kevser Albayrak ,&nbsp;Semin Gedikli ,&nbsp;Adem Kara ,&nbsp;Murat Karamese","doi":"10.1016/j.molimm.2025.03.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Our aim was to investigate the protective effects of 18β-Glycyrrhetinic-acid (50 and 100 mg/kg i.g) on LPS-induced rat sepsis model by analyzing some immune mechanisms including inflammation, apoptosis, and oxidative stress parameters by different techniques such as Mallory’s Trichome staining, ELISA, tissue biochemistry and Western Blotting.</div></div><div><h3>Methods</h3><div>Forty-eight Sprague Dawley rats divided into 6 groups as follows: (i) Control, (ii) DMSO, (iii) LPS induced-Sepsis, (iv) LPS induced-Sepsis+ 18β-GA 50 mg/kg, (v) LPS induced-Sepsis + 18β-GA 100 mg/kg, (vi) 18β-GA 100 mg/kg. The pro-inflammatory cytokine (IFNγ, IL-1ß, TNF- α) levels were measured by ELISA technique. All rat’s lung tissues micrographed with Mallory’s Trichome stain. Oxidative stress parameters (MDA, GSH, SOD, NRF2, and HO-1), TLR4 signaling, and apoptotic proteins (Bcl-2 and Caspase-3) were detected by using tissue biochemistry and Western blotting.</div></div><div><h3>Results</h3><div>LPS administration caused a significant increase in all pro-inflammatory cytokine and oxidant levels. Shedding of bronchiolar epithelium, thickening of alveolar septa and vascular dilatation in LPS groups’ lung tissue were revealed according to the histopathological findings. The H-scores of 18β-GA50 +LPS and 18β-GA100 +LPS groups were significantly lower than LPS groups’ (p &lt; 0.05). When lung tissue protein expression profiles were analyzed for HO-1, TLR4, IL-1β, TNF-α, Bcl-2, and Caspase-3 expression was higher in the LPS group than in the control. In addition, NRF2 and Bcl-2 protein expressions were higher in control, DMSO and 18β-GA100 groups, while it was the lowest level in LPS group.</div></div><div><h3>Conclusion</h3><div>18β-GA demonstrates significant protective effects against LPS-induced lung injury in rats by modulating various immune mechanisms. These findings indicate that 18β-GA, particularly at the higher dose, may be a potential therapeutic agent in managing sepsis by mitigating inflammation, oxidative stress, and apoptosis in lung tissue. The inflammation and oxidative stress parameters were decreased and the apoptotic markers were increased in treatment group. Further molecular studies should be performed to investigate the roles of some significant cellular signaling pathways.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"181 ","pages":"Pages 93-101"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589025000793","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Our aim was to investigate the protective effects of 18β-Glycyrrhetinic-acid (50 and 100 mg/kg i.g) on LPS-induced rat sepsis model by analyzing some immune mechanisms including inflammation, apoptosis, and oxidative stress parameters by different techniques such as Mallory’s Trichome staining, ELISA, tissue biochemistry and Western Blotting.

Methods

Forty-eight Sprague Dawley rats divided into 6 groups as follows: (i) Control, (ii) DMSO, (iii) LPS induced-Sepsis, (iv) LPS induced-Sepsis+ 18β-GA 50 mg/kg, (v) LPS induced-Sepsis + 18β-GA 100 mg/kg, (vi) 18β-GA 100 mg/kg. The pro-inflammatory cytokine (IFNγ, IL-1ß, TNF- α) levels were measured by ELISA technique. All rat’s lung tissues micrographed with Mallory’s Trichome stain. Oxidative stress parameters (MDA, GSH, SOD, NRF2, and HO-1), TLR4 signaling, and apoptotic proteins (Bcl-2 and Caspase-3) were detected by using tissue biochemistry and Western blotting.

Results

LPS administration caused a significant increase in all pro-inflammatory cytokine and oxidant levels. Shedding of bronchiolar epithelium, thickening of alveolar septa and vascular dilatation in LPS groups’ lung tissue were revealed according to the histopathological findings. The H-scores of 18β-GA50 +LPS and 18β-GA100 +LPS groups were significantly lower than LPS groups’ (p < 0.05). When lung tissue protein expression profiles were analyzed for HO-1, TLR4, IL-1β, TNF-α, Bcl-2, and Caspase-3 expression was higher in the LPS group than in the control. In addition, NRF2 and Bcl-2 protein expressions were higher in control, DMSO and 18β-GA100 groups, while it was the lowest level in LPS group.

Conclusion

18β-GA demonstrates significant protective effects against LPS-induced lung injury in rats by modulating various immune mechanisms. These findings indicate that 18β-GA, particularly at the higher dose, may be a potential therapeutic agent in managing sepsis by mitigating inflammation, oxidative stress, and apoptosis in lung tissue. The inflammation and oxidative stress parameters were decreased and the apoptotic markers were increased in treatment group. Further molecular studies should be performed to investigate the roles of some significant cellular signaling pathways.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular immunology
Molecular immunology 医学-免疫学
CiteScore
6.90
自引率
2.80%
发文量
324
审稿时长
50 days
期刊介绍: Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to: Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology Mechanisms of induction, regulation and termination of innate and adaptive immunity Intercellular communication, cooperation and regulation Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc) Mechanisms of action of the cells and molecules of the immune system Structural analysis Development of the immune system Comparative immunology and evolution of the immune system "Omics" studies and bioinformatics Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc) Technical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信