Felix Behrens, Johannes Holle, Chia-Yu Chen, Laura F. Ginsbach, Benjamin C. Krause, Ulrike Bruning, Fabian L. Kriegel, Toralf Kaiser, István A. Szijártó, Harithaa Anandakumar, Katrin Lehmann, Fabian Schumacher, Pawel Durek, Frederik F. Heinrich, Dörte Lodka, Carina Hoffmann, André A. Borchardt, Lisa Peters, Laura Michalick, Uwe Querfeld, Philip Bufler, Andreas Luch, Burkhard Kleuser, Jennifer A. Kirwan, Sofia K. Forslund, Julia Thumfahrt, Dominik Müller, Nicola Wilck, Mir-Farzin Mashreghi, Ulrike Löber, Hendrik Bartolomaeus, Wolfgang M. Kuebler, Szandor Simmons
{"title":"Circulating Extracellular Vesicles as Putative Mediators of Cardiovascular Disease in Paediatric Chronic Kidney Disease","authors":"Felix Behrens, Johannes Holle, Chia-Yu Chen, Laura F. Ginsbach, Benjamin C. Krause, Ulrike Bruning, Fabian L. Kriegel, Toralf Kaiser, István A. Szijártó, Harithaa Anandakumar, Katrin Lehmann, Fabian Schumacher, Pawel Durek, Frederik F. Heinrich, Dörte Lodka, Carina Hoffmann, André A. Borchardt, Lisa Peters, Laura Michalick, Uwe Querfeld, Philip Bufler, Andreas Luch, Burkhard Kleuser, Jennifer A. Kirwan, Sofia K. Forslund, Julia Thumfahrt, Dominik Müller, Nicola Wilck, Mir-Farzin Mashreghi, Ulrike Löber, Hendrik Bartolomaeus, Wolfgang M. Kuebler, Szandor Simmons","doi":"10.1002/jev2.70062","DOIUrl":null,"url":null,"abstract":"<p>Cardiovascular disease (CVD) is the leading cause of mortality in chronic kidney disease (CKD). However, the pathogenesis of CVD in CKD remains incompletely understood. Endothelial extracellular vesicles (EC-EVs) have previously been associated with CVD. We hypothesized that CKD alters EV release and cargo, subsequently promoting vascular remodelling. We recruited 94 children with CKD, including patients after kidney transplantation and healthy donors, and performed EV phenotyping and functional EV analyses in the absence of age-related comorbidities. Plasma EC-EVs were increased in haemodialysis patients and decreased after kidney transplantation. Thirty microRNAs were less abundant in total CKD plasma EVs with predicted importance in angiogenesis and smooth muscle cell proliferation. In vitro, CKD plasma EVs induced transcriptomic changes in angiogenesis pathways and functionally impaired angiogenic properties, migration and proliferation in ECs. High shear stress, as generated by arterio-venous fistulas, and uremic toxins were considered as potential drivers of EV release, but only the combination increased EV generation from venous ECs. The resulting EVs recapitulated miRNA changes observed in CKD in vivo. In conclusion, CKD results in the release of EVs with altered miRNA profiles and anti-angiogenic properties, which may mediate vascular pathology in children with CKD. EVs and their miRNA cargo may represent future therapeutic targets to attenuate CVD in CKD.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 3","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70062","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in chronic kidney disease (CKD). However, the pathogenesis of CVD in CKD remains incompletely understood. Endothelial extracellular vesicles (EC-EVs) have previously been associated with CVD. We hypothesized that CKD alters EV release and cargo, subsequently promoting vascular remodelling. We recruited 94 children with CKD, including patients after kidney transplantation and healthy donors, and performed EV phenotyping and functional EV analyses in the absence of age-related comorbidities. Plasma EC-EVs were increased in haemodialysis patients and decreased after kidney transplantation. Thirty microRNAs were less abundant in total CKD plasma EVs with predicted importance in angiogenesis and smooth muscle cell proliferation. In vitro, CKD plasma EVs induced transcriptomic changes in angiogenesis pathways and functionally impaired angiogenic properties, migration and proliferation in ECs. High shear stress, as generated by arterio-venous fistulas, and uremic toxins were considered as potential drivers of EV release, but only the combination increased EV generation from venous ECs. The resulting EVs recapitulated miRNA changes observed in CKD in vivo. In conclusion, CKD results in the release of EVs with altered miRNA profiles and anti-angiogenic properties, which may mediate vascular pathology in children with CKD. EVs and their miRNA cargo may represent future therapeutic targets to attenuate CVD in CKD.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.