Correlation between entropy fluctuations and the dielectric relaxation of glass-forming systems: The central role of dipolar-dipolar cross correlations.
{"title":"Correlation between entropy fluctuations and the dielectric relaxation of glass-forming systems: The central role of dipolar-dipolar cross correlations.","authors":"S Arrese-Igor","doi":"10.1063/5.0250974","DOIUrl":null,"url":null,"abstract":"<p><p>The premise that the dielectric α relaxation has a one-to-one correspondence with entropy fluctuations in equilibrium near the glass transition was experimentally verified in a systematic and quantitative manner for glass-forming systems in general. Validation of this relation was structured at different levels, taking into account various ingredients as the apolar-polar character, macromolecular structure, the presence of hydrogen bonds, or complex structure and dynamics. The results reclaim the suitability of dielectric spectroscopy to echo the primary structural relaxation of glass-forming systems, demonstrating that the dielectric response effectively captures the structural relaxation by reliably correlating with entropy fluctuations. The correlation with entropy fluctuations holds even when the dielectric strength of the systems is high and the dielectric response is narrow and dominated by cross correlations, proving that dipolar intermolecular interactions are fundamental to the structural relaxation and not a particularity of the dielectric probe. This one-to-one correspondence between structural and dielectric α relaxation does not support the existence of a generic spectral shape for the primary structural relaxation valid for all kinds of susceptibility functions.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0250974","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The premise that the dielectric α relaxation has a one-to-one correspondence with entropy fluctuations in equilibrium near the glass transition was experimentally verified in a systematic and quantitative manner for glass-forming systems in general. Validation of this relation was structured at different levels, taking into account various ingredients as the apolar-polar character, macromolecular structure, the presence of hydrogen bonds, or complex structure and dynamics. The results reclaim the suitability of dielectric spectroscopy to echo the primary structural relaxation of glass-forming systems, demonstrating that the dielectric response effectively captures the structural relaxation by reliably correlating with entropy fluctuations. The correlation with entropy fluctuations holds even when the dielectric strength of the systems is high and the dielectric response is narrow and dominated by cross correlations, proving that dipolar intermolecular interactions are fundamental to the structural relaxation and not a particularity of the dielectric probe. This one-to-one correspondence between structural and dielectric α relaxation does not support the existence of a generic spectral shape for the primary structural relaxation valid for all kinds of susceptibility functions.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.