Transitioning from stress electrocardiogram to cardiopulmonary exercise testing: a paradigm shift toward comprehensive medical evaluation of exercise function.
{"title":"Transitioning from stress electrocardiogram to cardiopulmonary exercise testing: a paradigm shift toward comprehensive medical evaluation of exercise function.","authors":"Omri Inbar, Or Inbar, Ron Dlin, Richard Casaburi","doi":"10.1007/s00421-025-05740-2","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiopulmonary exercise testing (CPET) has emerged as a powerful diagnostic tool, providing comprehensive physiological insights into the integrated function of cardiovascular, respiratory, and metabolic systems. Exploiting physiological interactions, CPET allows in-depth diagnostic insights. CPET performance entrains several complexities. Interpreting CPET data can be challenging, requiring significant physiological expertise. The advent of artificial intelligence (AI) has introduced a transformative approach to CPET interpretation, enhancing accuracy, efficiency, and clinical decision-making. This review article explores the current state of AI applications in CPET, highlighting AI's potential to replace the traditional stress electrocardiogram (ECG) test as the preferred diagnostic tool in preventive medicine and medical screening. The article discusses the underlying principles of AI, its integration into CPET interpretation, and the associated benefits, including improved diagnostic accuracy, reduced interobserver variability, and expedited decision-making. Additionally, it addresses the challenges and considerations surrounding the implementation of AI in CPET such as data quality, model interpretability, and ethical concerns. The review concludes by emphasizing the significant promise of AI-assisted CPET interpretation in revolutionizing preventive medicine and medical screening settings and enhancing patient care.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-025-05740-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiopulmonary exercise testing (CPET) has emerged as a powerful diagnostic tool, providing comprehensive physiological insights into the integrated function of cardiovascular, respiratory, and metabolic systems. Exploiting physiological interactions, CPET allows in-depth diagnostic insights. CPET performance entrains several complexities. Interpreting CPET data can be challenging, requiring significant physiological expertise. The advent of artificial intelligence (AI) has introduced a transformative approach to CPET interpretation, enhancing accuracy, efficiency, and clinical decision-making. This review article explores the current state of AI applications in CPET, highlighting AI's potential to replace the traditional stress electrocardiogram (ECG) test as the preferred diagnostic tool in preventive medicine and medical screening. The article discusses the underlying principles of AI, its integration into CPET interpretation, and the associated benefits, including improved diagnostic accuracy, reduced interobserver variability, and expedited decision-making. Additionally, it addresses the challenges and considerations surrounding the implementation of AI in CPET such as data quality, model interpretability, and ethical concerns. The review concludes by emphasizing the significant promise of AI-assisted CPET interpretation in revolutionizing preventive medicine and medical screening settings and enhancing patient care.
期刊介绍:
The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.