Experimental and Computational Investigation of Cu(II) and Zn(II) complexes: DFT, Docking, and Anti-Lung Cancer Studies.

IF 3.2 4区 医学 Q3 CHEMISTRY, MEDICINAL
Future medicinal chemistry Pub Date : 2025-03-01 Epub Date: 2025-03-21 DOI:10.1080/17568919.2025.2478815
Ummi Liyana Mohamad Rodzi, Karimah Kassim, Muhamad Azwan Hamali, Amalina Mohd Tajuddin, Maslinda Musa, Nur Amira Zulkifli, Fazira Ilyana Abdul Razak, Suhaila Sapari
{"title":"Experimental and Computational Investigation of Cu(II) and Zn(II) complexes: DFT, Docking, and Anti-Lung Cancer Studies.","authors":"Ummi Liyana Mohamad Rodzi, Karimah Kassim, Muhamad Azwan Hamali, Amalina Mohd Tajuddin, Maslinda Musa, Nur Amira Zulkifli, Fazira Ilyana Abdul Razak, Suhaila Sapari","doi":"10.1080/17568919.2025.2478815","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to synthesize and characterize a Schiff base ligand, (Z)-2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide (1), and its copper(II) (2) and zinc(II) (3) complexes, as well as evaluate their binding interactions with the epidermal growth factor receptor (EGFR) and anticancer activity against the human lung cancer A549 cell line.</p><p><strong>Materials & methods: </strong>The Schiff base ligand was synthesized by refluxing isatin and thiosemicarbazide for 3 hours. Complexes 2 and 3 were formed and characterized using elemental analysis, molar conductivity, IR, NMR, and UV-Visible spectroscopy. The geometry of complex 3 was determined via X-ray diffraction. Theoretical calculations were conducted using DFT with the hybrid GEN B3LYP method. Molecular docking was performed to assess binding energies with EGFR, and anticancer activity was evaluated against the A549 cell line.</p><p><strong>Results: </strong>Characterization confirmed successful synthesis of the compounds. Zinc complexation led to notable spectral shifts, and X-ray diffraction revealed complex 3 adopted a distorted tetrahedral geometry. DFT analysis highlighted complex 2 with the lowest energy gap (0.331 eV). Docking results showed strong EGFR binding energies (-5.70, -5.54, and -7.30 kcal/mol). Complex 2 demonstrated the highest anticancer efficacy with a cell viability of 1.35% after 48 h.</p><p><strong>Conclusions: </strong>Complex 2 exhibits significant anticancer potential and warrants further investigation as a therapeutic agent.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"669-679"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2478815","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: This study aimed to synthesize and characterize a Schiff base ligand, (Z)-2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide (1), and its copper(II) (2) and zinc(II) (3) complexes, as well as evaluate their binding interactions with the epidermal growth factor receptor (EGFR) and anticancer activity against the human lung cancer A549 cell line.

Materials & methods: The Schiff base ligand was synthesized by refluxing isatin and thiosemicarbazide for 3 hours. Complexes 2 and 3 were formed and characterized using elemental analysis, molar conductivity, IR, NMR, and UV-Visible spectroscopy. The geometry of complex 3 was determined via X-ray diffraction. Theoretical calculations were conducted using DFT with the hybrid GEN B3LYP method. Molecular docking was performed to assess binding energies with EGFR, and anticancer activity was evaluated against the A549 cell line.

Results: Characterization confirmed successful synthesis of the compounds. Zinc complexation led to notable spectral shifts, and X-ray diffraction revealed complex 3 adopted a distorted tetrahedral geometry. DFT analysis highlighted complex 2 with the lowest energy gap (0.331 eV). Docking results showed strong EGFR binding energies (-5.70, -5.54, and -7.30 kcal/mol). Complex 2 demonstrated the highest anticancer efficacy with a cell viability of 1.35% after 48 h.

Conclusions: Complex 2 exhibits significant anticancer potential and warrants further investigation as a therapeutic agent.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Future medicinal chemistry
Future medicinal chemistry CHEMISTRY, MEDICINAL-
CiteScore
5.80
自引率
2.40%
发文量
118
审稿时长
4-8 weeks
期刊介绍: Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信