{"title":"An updated patent review of EZH2 inhibitors (2024-present).","authors":"Guoquan Wan, Siyan Li, Qifan Tang, Huapei Qiu, Qiangsheng Zhang, Luoting Yu","doi":"10.1080/13543776.2025.2483399","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>EZH2 forms the PRC2 complex with SUZ12 and EED. As a crucial catalytic subunit of PRC2, EZH2 modifies histone H3K27 via its SET domain, resulting in chromatin condensation and suppressing the transcription of related target genes. EZH2 not only functions in PRC2-dependent transcriptional repression but can also activate gene expression in PRC2-independent circumstances or regulate the activity of downstream genes via its own activating mutations. On the basis of the critical role of EZH2 in cancer, the development of inhibitors targeting EZH2 provides a new strategy for cancer therapy.</p><p><strong>Areas covered: </strong>The purpose of this review is to summarize the molecular mechanisms of EZH2 inhibitors and emphasize the research progress on EZH2 inhibitors published in the patent literature in recent years. The literature and patent databases of PubMed, Web of Science, SCIFinder, WIPO, USPTO, EPO, and CNIPA were combined to search for more effective EZH2 inhibitors.</p><p><strong>Expert opinion: </strong>Recently, a wide range of structurally diverse EZH2 inhibitors, particularly EZH2 degraders, have been identified. These EZH2 modulators have demonstrated significant potential in treating various diseases, with cancer being a primary focus. The development of small molecules targeting EZH2 with distinct pharmacological effects is poised with numerous opportunities.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":" ","pages":"1-14"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Patents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543776.2025.2483399","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: EZH2 forms the PRC2 complex with SUZ12 and EED. As a crucial catalytic subunit of PRC2, EZH2 modifies histone H3K27 via its SET domain, resulting in chromatin condensation and suppressing the transcription of related target genes. EZH2 not only functions in PRC2-dependent transcriptional repression but can also activate gene expression in PRC2-independent circumstances or regulate the activity of downstream genes via its own activating mutations. On the basis of the critical role of EZH2 in cancer, the development of inhibitors targeting EZH2 provides a new strategy for cancer therapy.
Areas covered: The purpose of this review is to summarize the molecular mechanisms of EZH2 inhibitors and emphasize the research progress on EZH2 inhibitors published in the patent literature in recent years. The literature and patent databases of PubMed, Web of Science, SCIFinder, WIPO, USPTO, EPO, and CNIPA were combined to search for more effective EZH2 inhibitors.
Expert opinion: Recently, a wide range of structurally diverse EZH2 inhibitors, particularly EZH2 degraders, have been identified. These EZH2 modulators have demonstrated significant potential in treating various diseases, with cancer being a primary focus. The development of small molecules targeting EZH2 with distinct pharmacological effects is poised with numerous opportunities.
期刊介绍:
Expert Opinion on Therapeutic Patents (ISSN 1354-3776 [print], 1744-7674 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles on recent pharmaceutical patent claims, providing expert opinion the scope for future development, in the context of the scientific literature.
The Editors welcome:
Reviews covering recent patent claims on compounds or applications with therapeutic potential, including biotherapeutics and small-molecule agents with specific molecular targets; and patenting trends in a particular therapeutic area
Patent Evaluations examining the aims and chemical and biological claims of individual patents
Perspectives on issues relating to intellectual property
The audience consists of scientists, managers and decision-makers in the pharmaceutical industry and others closely involved in R&D
Sample our Bioscience journals, sign in here to start your access, Latest two full volumes FREE to you for 14 days.