Brain metastases lung adenocarcinoma patients with BRG1 loss have a grim prognosis, featuring unique morphological and methylation characteristics.

IF 4.2 3区 医学 Q2 ONCOLOGY
Junjie Yang, Jing Feng, Zejun Duan, Xing Liu, Hongwei Zhang, Mingshan Zhang, Zhong Ma, Zejuan Hu, Lei Xiang, Xueling Qi
{"title":"Brain metastases lung adenocarcinoma patients with BRG1 loss have a grim prognosis, featuring unique morphological and methylation characteristics.","authors":"Junjie Yang, Jing Feng, Zejun Duan, Xing Liu, Hongwei Zhang, Mingshan Zhang, Zhong Ma, Zejuan Hu, Lei Xiang, Xueling Qi","doi":"10.1007/s10585-025-10337-2","DOIUrl":null,"url":null,"abstract":"<p><p>BRG1 deficiency in patients with lung adenocarcinoma that has metastasized to the brain, termed BRG1-deficient brain metastasis lung adenocarcinoma, is an uncommon event. Prior to this study, these patients had not undergone extensive molecular and (epi)genetic analysis. We report a comprehensive clinical, histopathologic, and molecular assessment of 9 BRG1-deficient brain metastasis lung adenocarcinoma cohort (BRG1-deficient BM cohort) in comparison with a 16 BRG1-retained brain metastasis lung adenocarcinoma cohort (BRG1-retained BM cohort). Patients with BRG1-deficient BM exhibited a significantly increased risk of mortality. Molecular analysis revealed a high prevalence of mutations in SMARCA4 and TP53 genes within this group. DNA methylation molecular diagnostics showed a high rate of genomic instability and a markedly lower DNA methylation age in these patients. Functional enrichment analysis of differentially methylated genes suggested that hypomethylation genes were primarily associated with the negative regulation of neuron differentiation, G protein-coupled receptor signaling pathways, and cell differentiation. Conversely, hypermethylation was linked to the regulation of small GTPase mediated signal transduction, Rho protein signal transduction, DNA damage response, and apoptotic processes. This study investigated a rare subgroup of lung adenocarcinoma patients with brain metastasis characterized by BRG1 deficiency and a poor prognosis. Our study not only provides a comprehensive multi-omic data resource but also provides valuable biological insights into patients. The findings may serve as a valuable reference for the future pathological diagnosis of BRG1-deficient brain metastasis in lung adenocarcinoma patients.</p>","PeriodicalId":10267,"journal":{"name":"Clinical & Experimental Metastasis","volume":"42 3","pages":"20"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928351/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Experimental Metastasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10585-025-10337-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BRG1 deficiency in patients with lung adenocarcinoma that has metastasized to the brain, termed BRG1-deficient brain metastasis lung adenocarcinoma, is an uncommon event. Prior to this study, these patients had not undergone extensive molecular and (epi)genetic analysis. We report a comprehensive clinical, histopathologic, and molecular assessment of 9 BRG1-deficient brain metastasis lung adenocarcinoma cohort (BRG1-deficient BM cohort) in comparison with a 16 BRG1-retained brain metastasis lung adenocarcinoma cohort (BRG1-retained BM cohort). Patients with BRG1-deficient BM exhibited a significantly increased risk of mortality. Molecular analysis revealed a high prevalence of mutations in SMARCA4 and TP53 genes within this group. DNA methylation molecular diagnostics showed a high rate of genomic instability and a markedly lower DNA methylation age in these patients. Functional enrichment analysis of differentially methylated genes suggested that hypomethylation genes were primarily associated with the negative regulation of neuron differentiation, G protein-coupled receptor signaling pathways, and cell differentiation. Conversely, hypermethylation was linked to the regulation of small GTPase mediated signal transduction, Rho protein signal transduction, DNA damage response, and apoptotic processes. This study investigated a rare subgroup of lung adenocarcinoma patients with brain metastasis characterized by BRG1 deficiency and a poor prognosis. Our study not only provides a comprehensive multi-omic data resource but also provides valuable biological insights into patients. The findings may serve as a valuable reference for the future pathological diagnosis of BRG1-deficient brain metastasis in lung adenocarcinoma patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.00%
发文量
55
审稿时长
12 months
期刊介绍: The Journal''s scope encompasses all aspects of metastasis research, whether laboratory-based, experimental or clinical and therapeutic. It covers such areas as molecular biology, pharmacology, tumor biology, and clinical cancer treatment (with all its subdivisions of surgery, chemotherapy and radio-therapy as well as pathology and epidemiology) insofar as these disciplines are concerned with the Journal''s core subject of metastasis formation, prevention and treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信