Polyphenols as microRNA modulator in endometrial cancer: implications for apoptosis induction.

IF 2.3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dan Liu, Xiaohua Liu
{"title":"Polyphenols as microRNA modulator in endometrial cancer: implications for apoptosis induction.","authors":"Dan Liu, Xiaohua Liu","doi":"10.1007/s00438-025-02238-6","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer (EC) accounts for approximately 417,336 cases globally, making it the sixth most commonly diagnosed cancer among women. Such factors have led to hesitancy in utilizing aggressive treatments or enrolling older patients in clinical trials. Recent molecular studies have identified unique expression patterns of microRNAs (miRNAs) in endometrial cancer tissue compared to healthy endometrial tissue, highlighting their role in tumorigenesis through pathways that support proliferation, invasion, and metastasis. Polyphenols, bioactive compounds found in a variety of plant-based foods such as fruits, vegetables, tea, and soybeans, have demonstrated diverse physiological benefits, including antioxidant, anti-inflammatory, and anticancer properties. These compounds influence cellular pathways critical to cancer progression, including apoptosis, immune modulation, and inflammation reduction. Emerging evidence suggests that polyphenols may exert anticancer effects in part by modulating miRNAs involved in carcinogenesis. Specifically, compounds like curcumin, quercetin, resveratrol, and genistein have shown potential in targeting oncogenic and tumor-suppressive miRNAs, thereby impacting cellular mechanisms linked to cancer progression. Therefore, this review examines the role of polyphenols in regulating miRNAs within the context of endometrial cancer, focusing on their potential to modulate apoptosis and other cancer hallmarks. By elucidating these mechanisms, this paper aims to contribute to the understanding of polyphenol-mediated miRNA regulation as a promising therapeutic avenue in endometrial cancer management.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"34"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02238-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer (EC) accounts for approximately 417,336 cases globally, making it the sixth most commonly diagnosed cancer among women. Such factors have led to hesitancy in utilizing aggressive treatments or enrolling older patients in clinical trials. Recent molecular studies have identified unique expression patterns of microRNAs (miRNAs) in endometrial cancer tissue compared to healthy endometrial tissue, highlighting their role in tumorigenesis through pathways that support proliferation, invasion, and metastasis. Polyphenols, bioactive compounds found in a variety of plant-based foods such as fruits, vegetables, tea, and soybeans, have demonstrated diverse physiological benefits, including antioxidant, anti-inflammatory, and anticancer properties. These compounds influence cellular pathways critical to cancer progression, including apoptosis, immune modulation, and inflammation reduction. Emerging evidence suggests that polyphenols may exert anticancer effects in part by modulating miRNAs involved in carcinogenesis. Specifically, compounds like curcumin, quercetin, resveratrol, and genistein have shown potential in targeting oncogenic and tumor-suppressive miRNAs, thereby impacting cellular mechanisms linked to cancer progression. Therefore, this review examines the role of polyphenols in regulating miRNAs within the context of endometrial cancer, focusing on their potential to modulate apoptosis and other cancer hallmarks. By elucidating these mechanisms, this paper aims to contribute to the understanding of polyphenol-mediated miRNA regulation as a promising therapeutic avenue in endometrial cancer management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Genetics and Genomics
Molecular Genetics and Genomics 生物-生化与分子生物学
CiteScore
5.10
自引率
3.20%
发文量
134
审稿时长
1 months
期刊介绍: Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology. The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信