Evaluating the effects of high-throughput structural neuroimaging predictors on whole-brain functional connectome outcomes via network-based matrix-on-vector regression.
{"title":"Evaluating the effects of high-throughput structural neuroimaging predictors on whole-brain functional connectome outcomes via network-based matrix-on-vector regression.","authors":"Tong Lu, Yuan Zhang, Vince Lyzinski, Chuan Bi, Peter Kochunov, Elliot Hong, Shuo Chen","doi":"10.1093/biomtc/ujaf027","DOIUrl":null,"url":null,"abstract":"<p><p>The joint analysis of multimodal neuroimaging data is vital in brain research, revealing complex interactions between brain structures and functions. Our study is motivated by the analysis of a vast dataset of brain functional connectivity (FC) and multimodal structural imaging (SI) features from the UK Biobank. Specifically, we aim to investigate the effects of SI features, such as white matter microstructure integrity (WMMI) and cortical thickness, on the whole-brain functional connectome network. This analysis is inherently challenging due to the extensive structural-functional associations and the intricate network patterns present in multimodal high-dimensional neuroimaging data. To bridge methodological gaps, we developed a novel multi-level sub-graph extraction method (dense bipartite with nested unipartite graph) within a matrix(network)-on-vector regression model. This method identifies subsets of spatially specific SI features that intensely and systematically influence FC sub-networks, while effectively suppressing false positives in large-scale datasets. Applying our method to a multimodal neuroimaging dataset of 4242 participants ffrom the UK Biobank, we evaluated the effects of whole-brain WMMI and cortical thickness on resting-state FC. Our findings indicate that the WMMI in corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks, with an average correlation of 0.81 ($p < 0.001$).</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926586/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The joint analysis of multimodal neuroimaging data is vital in brain research, revealing complex interactions between brain structures and functions. Our study is motivated by the analysis of a vast dataset of brain functional connectivity (FC) and multimodal structural imaging (SI) features from the UK Biobank. Specifically, we aim to investigate the effects of SI features, such as white matter microstructure integrity (WMMI) and cortical thickness, on the whole-brain functional connectome network. This analysis is inherently challenging due to the extensive structural-functional associations and the intricate network patterns present in multimodal high-dimensional neuroimaging data. To bridge methodological gaps, we developed a novel multi-level sub-graph extraction method (dense bipartite with nested unipartite graph) within a matrix(network)-on-vector regression model. This method identifies subsets of spatially specific SI features that intensely and systematically influence FC sub-networks, while effectively suppressing false positives in large-scale datasets. Applying our method to a multimodal neuroimaging dataset of 4242 participants ffrom the UK Biobank, we evaluated the effects of whole-brain WMMI and cortical thickness on resting-state FC. Our findings indicate that the WMMI in corticospinal tracts and inferior cerebellar peduncle significantly affect functional connections of sensorimotor, salience, and executive sub-networks, with an average correlation of 0.81 ($p < 0.001$).
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.