Jon J Vernon, David W Eyre, Mark H Wilcox, Jane Freeman
{"title":"Molecular clock complexities of Clostridioides difficile.","authors":"Jon J Vernon, David W Eyre, Mark H Wilcox, Jane Freeman","doi":"10.1016/j.anaerobe.2025.102953","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Reconstruct the phylogenetic status of a collection of historical Clostridioides difficile isolates and evaluate the congruence of their evolutionary trajectories with established molecular clock models.</p><p><strong>Methods: </strong>Phylogenetic analysis was performed on Illumina sequence reads from previously analysed historic C. difficile isolates (1980-86; n=75) demonstrating multiple antimicrobial resistances. Data was grouped by ribotype (RT), including comparators from European surveillance (2012-13) and phylogenetic studies (1985-2010). Reads were mapped to CD630/CD196 reference genomes and compared using recombination-adjusted maximum likelihood trees. Prediction intervals for expected SNP differences by age were calculated using a Poisson distribution and molecular clock estimates (0.74 SNPs per genome/per year). Root-to-tip analysis was performed to determine the date of most common recent ancestor of genomes sharing a ribotype.</p><p><strong>Results: </strong>Moxifloxacin-resistant (>16 mg/L) RT027 isolate JV67 (1986) was two SNPs distinct from a 2006 genome, fewer than the expected lower estimate (4.4 SNPs) under current molecular clock calculations; (p=3.93x10<sup>-5</sup>). For isolate JV02 (1981), the 13 SNP divergence from a 2008 isolate was consistent with expectations (5.9 SNPs; p=0.07). JV73 (1983) demonstrated an 8 SNP difference, which although above the expected lower limit (5.5 SNPs), was outside the 95% prediction interval; (p= 4.51x10<sup>-3</sup>). Only sixty-nine percent of historical genomes fit within the prediction interval for the number of SNPs expected compared to recent isolates, with fewer SNPs observed more frequently than expected. Root-to-tip analysis demonstrated only a weak linear correlation.</p><p><strong>Conclusions: </strong>C. difficile molecular clock estimations may be more complex than previously considered, with periods of spore quiescence potentially complicating analyses.</p>","PeriodicalId":8050,"journal":{"name":"Anaerobe","volume":" ","pages":"102953"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anaerobe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.anaerobe.2025.102953","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Reconstruct the phylogenetic status of a collection of historical Clostridioides difficile isolates and evaluate the congruence of their evolutionary trajectories with established molecular clock models.
Methods: Phylogenetic analysis was performed on Illumina sequence reads from previously analysed historic C. difficile isolates (1980-86; n=75) demonstrating multiple antimicrobial resistances. Data was grouped by ribotype (RT), including comparators from European surveillance (2012-13) and phylogenetic studies (1985-2010). Reads were mapped to CD630/CD196 reference genomes and compared using recombination-adjusted maximum likelihood trees. Prediction intervals for expected SNP differences by age were calculated using a Poisson distribution and molecular clock estimates (0.74 SNPs per genome/per year). Root-to-tip analysis was performed to determine the date of most common recent ancestor of genomes sharing a ribotype.
Results: Moxifloxacin-resistant (>16 mg/L) RT027 isolate JV67 (1986) was two SNPs distinct from a 2006 genome, fewer than the expected lower estimate (4.4 SNPs) under current molecular clock calculations; (p=3.93x10-5). For isolate JV02 (1981), the 13 SNP divergence from a 2008 isolate was consistent with expectations (5.9 SNPs; p=0.07). JV73 (1983) demonstrated an 8 SNP difference, which although above the expected lower limit (5.5 SNPs), was outside the 95% prediction interval; (p= 4.51x10-3). Only sixty-nine percent of historical genomes fit within the prediction interval for the number of SNPs expected compared to recent isolates, with fewer SNPs observed more frequently than expected. Root-to-tip analysis demonstrated only a weak linear correlation.
Conclusions: C. difficile molecular clock estimations may be more complex than previously considered, with periods of spore quiescence potentially complicating analyses.
期刊介绍:
Anaerobe is essential reading for those who wish to remain at the forefront of discoveries relating to life processes of strictly anaerobes. The journal is multi-disciplinary, and provides a unique forum for those investigating anaerobic organisms that cause infections in humans and animals, as well as anaerobes that play roles in microbiomes or environmental processes.
Anaerobe publishes reviews, mini reviews, original research articles, notes and case reports. Relevant topics fall into the broad categories of anaerobes in human and animal diseases, anaerobes in the microbiome, anaerobes in the environment, diagnosis of anaerobes in clinical microbiology laboratories, molecular biology, genetics, pathogenesis, toxins and antibiotic susceptibility of anaerobic bacteria.