Artificial intelligence for abdominopelvic trauma imaging: trends, gaps, and future directions.

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
David Dreizin, Chi-Tung Cheng, Chien-Hung Liao, Ankush Jindal, Errol Colak
{"title":"Artificial intelligence for abdominopelvic trauma imaging: trends, gaps, and future directions.","authors":"David Dreizin, Chi-Tung Cheng, Chien-Hung Liao, Ankush Jindal, Errol Colak","doi":"10.1007/s00261-025-04816-z","DOIUrl":null,"url":null,"abstract":"<p><p>Abdominopelvic trauma is a major cause of morbidity and mortality, typically resulting from high-energy mechanisms such as motor vehicle collisions and penetrating injuries. Admission abdominopelvic trauma CT, performed either selectively or as part of a whole-body CT protocol, has become the workhorse screening and surgical planning modality due to improvements in speed and image quality. Radiography remains an essential element of the secondary trauma survey, and Focused Assessment with Sonography for Trauma (FAST) scanning has added value for quick assessment of non-compressible hemorrhage in hemodynamically unstable patients. Complex and severe polytrauma cases often delay radiology report turnaround times, which can potentially impede urgent clinical decision-making. Artificial intelligence (AI) computer-aided detection and diagnosis (CAD) offers promising solutions for enhanced diagnostic efficiency and accuracy in abdominopelvic trauma imaging. Although commercial AI tools for abdominopelvic trauma are currently available for only a few use cases, the literature reveals robust research and development (R&D) of prototype tools. Multiscale convolutional neural networks (CNNs) and transformer-based models are capable of detecting and quantifying solid organ injuries, fractures, and hemorrhage with a high degree of precision. Further, generalist foundation models such as multimodal vision-language models (VLMs) can be adapted and fine-tuned using imaging, clinical, and text data for a range of tasks, including detection, quantitative visualization, prognostication, and report auto-generation. Despite their promise, for most use cases in abdominopelvic trauma, AI CAD tools remain in the pilot stages of technology readiness, with persistent challenges related to data availability; the need for open-access PACS compatible software pipelines for pre-clinical shadow-testing; lack of well-designed multi-institutional validation studies; and regulatory hurdles. This narrative review provides a snapshot of the current state of AI in abdominopelvic trauma, examining existing commercial tools; research and development throughout the technology readiness pipeline; and future directions in this domain.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-025-04816-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Abdominopelvic trauma is a major cause of morbidity and mortality, typically resulting from high-energy mechanisms such as motor vehicle collisions and penetrating injuries. Admission abdominopelvic trauma CT, performed either selectively or as part of a whole-body CT protocol, has become the workhorse screening and surgical planning modality due to improvements in speed and image quality. Radiography remains an essential element of the secondary trauma survey, and Focused Assessment with Sonography for Trauma (FAST) scanning has added value for quick assessment of non-compressible hemorrhage in hemodynamically unstable patients. Complex and severe polytrauma cases often delay radiology report turnaround times, which can potentially impede urgent clinical decision-making. Artificial intelligence (AI) computer-aided detection and diagnosis (CAD) offers promising solutions for enhanced diagnostic efficiency and accuracy in abdominopelvic trauma imaging. Although commercial AI tools for abdominopelvic trauma are currently available for only a few use cases, the literature reveals robust research and development (R&D) of prototype tools. Multiscale convolutional neural networks (CNNs) and transformer-based models are capable of detecting and quantifying solid organ injuries, fractures, and hemorrhage with a high degree of precision. Further, generalist foundation models such as multimodal vision-language models (VLMs) can be adapted and fine-tuned using imaging, clinical, and text data for a range of tasks, including detection, quantitative visualization, prognostication, and report auto-generation. Despite their promise, for most use cases in abdominopelvic trauma, AI CAD tools remain in the pilot stages of technology readiness, with persistent challenges related to data availability; the need for open-access PACS compatible software pipelines for pre-clinical shadow-testing; lack of well-designed multi-institutional validation studies; and regulatory hurdles. This narrative review provides a snapshot of the current state of AI in abdominopelvic trauma, examining existing commercial tools; research and development throughout the technology readiness pipeline; and future directions in this domain.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信