Zhipeng Zhou , Xinhui Yu , Joseph Jonathan Magoua , Jianqiang Cui , Haiying Luan , Dong Lin
{"title":"Integrating machine learning and a large language model to construct a domain knowledge graph for reducing the risk of fall-from-height accidents","authors":"Zhipeng Zhou , Xinhui Yu , Joseph Jonathan Magoua , Jianqiang Cui , Haiying Luan , Dong Lin","doi":"10.1016/j.aap.2025.108009","DOIUrl":null,"url":null,"abstract":"<div><div>Fall-from-height (FFH) accidents remain a major source of workplace injuries and fatalities. Fall protection systems (FPS) are critical for preventing falls in the work-at-height (WAH) environment. However, challenges in designing and selecting effective FPS persist across various industries, and existing tools often lack practical references. This study aims to develop an FFH-specific knowledge graph (FFH-KG) to support FPS design. By structuring accident data, the FFH-KG provides empirical insights to help designers improve FPS frameworks, aiding safety planning and decision-making. It serves as a decision support system for FPS designers and safety professionals, guiding the selection and design of appropriate protection solutions for diverse WAH scenarios. The FFH-KG was constructed using a hybrid natural language processing approach, combining manual extraction, entity recognition, text segmentation, and rule-based relation extraction. It was grounded in a schema layer (i.e., ontology) established by experts. A text-mining approach, integrating machine learning with a large language model, facilitated the categorization of fall types, refinement of WAH scenarios, and identification of fall causes, enhancing the content and applicability of knowledge graph. A total of 2,200 entities and 4,820 relationships were created based on fall protection equipment standard documents and fall-from-height accident investigation reports, forming a foundation for developing countermeasures. The retrieval performance of FFH-KG was validated through three case studies. This research has also made significant progress in intelligent safety engineering and management across industries.</div></div>","PeriodicalId":6926,"journal":{"name":"Accident; analysis and prevention","volume":"215 ","pages":"Article 108009"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accident; analysis and prevention","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001457525000958","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ERGONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fall-from-height (FFH) accidents remain a major source of workplace injuries and fatalities. Fall protection systems (FPS) are critical for preventing falls in the work-at-height (WAH) environment. However, challenges in designing and selecting effective FPS persist across various industries, and existing tools often lack practical references. This study aims to develop an FFH-specific knowledge graph (FFH-KG) to support FPS design. By structuring accident data, the FFH-KG provides empirical insights to help designers improve FPS frameworks, aiding safety planning and decision-making. It serves as a decision support system for FPS designers and safety professionals, guiding the selection and design of appropriate protection solutions for diverse WAH scenarios. The FFH-KG was constructed using a hybrid natural language processing approach, combining manual extraction, entity recognition, text segmentation, and rule-based relation extraction. It was grounded in a schema layer (i.e., ontology) established by experts. A text-mining approach, integrating machine learning with a large language model, facilitated the categorization of fall types, refinement of WAH scenarios, and identification of fall causes, enhancing the content and applicability of knowledge graph. A total of 2,200 entities and 4,820 relationships were created based on fall protection equipment standard documents and fall-from-height accident investigation reports, forming a foundation for developing countermeasures. The retrieval performance of FFH-KG was validated through three case studies. This research has also made significant progress in intelligent safety engineering and management across industries.
期刊介绍:
Accident Analysis & Prevention provides wide coverage of the general areas relating to accidental injury and damage, including the pre-injury and immediate post-injury phases. Published papers deal with medical, legal, economic, educational, behavioral, theoretical or empirical aspects of transportation accidents, as well as with accidents at other sites. Selected topics within the scope of the Journal may include: studies of human, environmental and vehicular factors influencing the occurrence, type and severity of accidents and injury; the design, implementation and evaluation of countermeasures; biomechanics of impact and human tolerance limits to injury; modelling and statistical analysis of accident data; policy, planning and decision-making in safety.