{"title":"Molecular insights of vitamin D receptor SNPs and vitamin D analogs: a novel therapeutic avenue for vitiligo.","authors":"Sakthi Sasikala Sundaravel, Beena Briget Kuriakose, Amani Hamad Alhazmi, Sabareeswari Jeyaraman, Sushma Shruthi Jagannathan, Karthikeyan Muthusamy","doi":"10.1007/s11030-025-11168-9","DOIUrl":null,"url":null,"abstract":"<p><p>Vitamin D receptor (VDR) agonists play a pivotal role in modulating immune responses and promoting melanocyte survival, making them potential candidates for vitiligo treatment. The VDR gene is integral to mediating the effects of vitamin D in the immune system, and disruptions in its structure due to missense mutations may significantly contribute to the pathogenesis of vitiligo. Missense single-nucleotide polymorphisms (SNPs) can alter the amino acid sequence of the VDR protein, potentially affecting its ligand-binding affinity and downstream signaling. Investigating these missense SNPs provides critical insights into the genetic underpinnings of vitiligo and may help identify biomarkers for early detection and precision-targeted therapies. This study explored the therapeutic potential of vitamin D analogs in vitiligo management, with a particular focus on their binding interactions and molecular efficacy. Using molecular docking and virtual screening, 24 vitamin D analogs were evaluated. Calcipotriol exhibited the highest binding affinity (-11.4 kcal/mol) and unique interactions with key residues in the VDR ligand-binding domain. Additionally, an analysis of structural variations stemming from missense mutations in the VDR gene highlighted potential impacts on receptor-ligand interactions, further emphasizing the importance of genetic factors in treatment response. These findings underscore the potential of calcipotriol to promote melanogenesis and modulate pigmentation in vitiligo. A comparative analysis identified structural variations influencing the efficacy of other analogs, such as calcitriol and tacalcitol. Although the in silico methods provided valuable insights, the study acknowledges the limitations of excluding dynamic cellular environments and emphasizes the need for experimental validation. Overall, this study enhances our understanding of VDR-targeted therapies, and calcipotriol is a promising candidate for further development in the management of vitiligo.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11168-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin D receptor (VDR) agonists play a pivotal role in modulating immune responses and promoting melanocyte survival, making them potential candidates for vitiligo treatment. The VDR gene is integral to mediating the effects of vitamin D in the immune system, and disruptions in its structure due to missense mutations may significantly contribute to the pathogenesis of vitiligo. Missense single-nucleotide polymorphisms (SNPs) can alter the amino acid sequence of the VDR protein, potentially affecting its ligand-binding affinity and downstream signaling. Investigating these missense SNPs provides critical insights into the genetic underpinnings of vitiligo and may help identify biomarkers for early detection and precision-targeted therapies. This study explored the therapeutic potential of vitamin D analogs in vitiligo management, with a particular focus on their binding interactions and molecular efficacy. Using molecular docking and virtual screening, 24 vitamin D analogs were evaluated. Calcipotriol exhibited the highest binding affinity (-11.4 kcal/mol) and unique interactions with key residues in the VDR ligand-binding domain. Additionally, an analysis of structural variations stemming from missense mutations in the VDR gene highlighted potential impacts on receptor-ligand interactions, further emphasizing the importance of genetic factors in treatment response. These findings underscore the potential of calcipotriol to promote melanogenesis and modulate pigmentation in vitiligo. A comparative analysis identified structural variations influencing the efficacy of other analogs, such as calcitriol and tacalcitol. Although the in silico methods provided valuable insights, the study acknowledges the limitations of excluding dynamic cellular environments and emphasizes the need for experimental validation. Overall, this study enhances our understanding of VDR-targeted therapies, and calcipotriol is a promising candidate for further development in the management of vitiligo.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;