{"title":"ChREBP drives fibroblast proliferation and promotes pulmonary fibrosis development","authors":"Jian Zheng , Yang Zhang , Yan Chen , Li Tian","doi":"10.1016/j.cyto.2025.156906","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The study aimed to investigate the role of carbohydrate-responsive element-binding protein (ChREBP) in the pathogenesis of pulmonary fibrosis (PF) by assessing its impact on fibrotic protein expression, fibroblast proliferation, and apoptosis in lung tissues.</div></div><div><h3>Method</h3><div>The PF model was established using bleomycin, and pathological changes in lung tissues were assessed through histopathological analysis. Expression levels of inflammatory markers and fibrotic proteins, including ChREBP, were measured using Western blot and ELISA. Additionally, human embryonic lung fibroblasts (MRC-5) were transfected with ChREBP overexpression or silencing vectors following TGF-β1 induction to examine changes in cellular behavior, including viability, apoptosis, and fibrotic protein expression.</div></div><div><h3>Results</h3><div>The PF model group showed significant alveolar structural abnormalities and elevated levels of TNF-α, MMP-7 and TGF-β1. ChREBP expression was markedly increased in fibrotic tissues (<em>P</em> < 0.05). In vitro<em>,</em> ChREBP overexpression in MRC-5 cells enhanced fibrotic protein levels, increased cell viability, and reduced apoptosis rates. Conversely, silencing ChREBP reduced fibrotic protein expression, inhibited fibroblast proliferation, and increased apoptosis (<em>P</em> < 0.05). These findings suggest that ChREBP plays a key role in modulating fibrosis-related pathways in PF.</div></div><div><h3>Conclusions</h3><div>ChREBP is substantially upregulated in PF and plays a key role in promoting fibroblast proliferation and inhibiting apoptosis. These findings suggest that targeting ChREBP may present a novel therapeutic strategy for treating pulmonary fibrosis by modulating fibrotic and apoptotic pathways.</div></div>","PeriodicalId":297,"journal":{"name":"Cytokine","volume":"190 ","pages":"Article 156906"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043466625000535","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The study aimed to investigate the role of carbohydrate-responsive element-binding protein (ChREBP) in the pathogenesis of pulmonary fibrosis (PF) by assessing its impact on fibrotic protein expression, fibroblast proliferation, and apoptosis in lung tissues.
Method
The PF model was established using bleomycin, and pathological changes in lung tissues were assessed through histopathological analysis. Expression levels of inflammatory markers and fibrotic proteins, including ChREBP, were measured using Western blot and ELISA. Additionally, human embryonic lung fibroblasts (MRC-5) were transfected with ChREBP overexpression or silencing vectors following TGF-β1 induction to examine changes in cellular behavior, including viability, apoptosis, and fibrotic protein expression.
Results
The PF model group showed significant alveolar structural abnormalities and elevated levels of TNF-α, MMP-7 and TGF-β1. ChREBP expression was markedly increased in fibrotic tissues (P < 0.05). In vitro, ChREBP overexpression in MRC-5 cells enhanced fibrotic protein levels, increased cell viability, and reduced apoptosis rates. Conversely, silencing ChREBP reduced fibrotic protein expression, inhibited fibroblast proliferation, and increased apoptosis (P < 0.05). These findings suggest that ChREBP plays a key role in modulating fibrosis-related pathways in PF.
Conclusions
ChREBP is substantially upregulated in PF and plays a key role in promoting fibroblast proliferation and inhibiting apoptosis. These findings suggest that targeting ChREBP may present a novel therapeutic strategy for treating pulmonary fibrosis by modulating fibrotic and apoptotic pathways.
期刊介绍:
The journal Cytokine has an open access mirror journal Cytokine: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
* Devoted exclusively to the study of the molecular biology, genetics, biochemistry, immunology, genome-wide association studies, pathobiology, diagnostic and clinical applications of all known interleukins, hematopoietic factors, growth factors, cytotoxins, interferons, new cytokines, and chemokines, Cytokine provides comprehensive coverage of cytokines and their mechanisms of actions, 12 times a year by publishing original high quality refereed scientific papers from prominent investigators in both the academic and industrial sectors.
We will publish 3 major types of manuscripts:
1) Original manuscripts describing research results.
2) Basic and clinical reviews describing cytokine actions and regulation.
3) Short commentaries/perspectives on recently published aspects of cytokines, pathogenesis and clinical results.