Effect of hydroxy groups on X-ray-induced reactions of azo benzene derivatives†

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Koki Ogawara, Naoya Ieda, Hideo Takakura, Kohei Nakajima, Akari Mukaimine, Mei Harada, Kazuaki Hashimoto, Osamu Inanami and Mikako Ogawa
{"title":"Effect of hydroxy groups on X-ray-induced reactions of azo benzene derivatives†","authors":"Koki Ogawara, Naoya Ieda, Hideo Takakura, Kohei Nakajima, Akari Mukaimine, Mei Harada, Kazuaki Hashimoto, Osamu Inanami and Mikako Ogawa","doi":"10.1039/D5OB00003C","DOIUrl":null,"url":null,"abstract":"<p >Caged compounds whose chemical bonds are cleavable by specific stimuli are useful tools for life science research because they facilitate control of various biological activities spatiotemporally. Although caged compounds activatable by hard X-rays can be employed for control in deep tissue owing to the high bio-permeability of X-rays, chemical bond cleavage by ionizing radiation has not been investigated adequately. Previously, we demonstrated that an azo bond tethered to a rhodamine scaffold can be efficiently cleaved by hydrated electrons, which is one of the radiolysis products of water, to release rhodamine. In this study, we synthesized novel azo benzene derivatives, AZO1–4, which can release 3-aminobenzamide (3-ABA), a poly (ADP-ribose) polymerase (PARP) inhibitor, and hydroxy groups or amino groups were introduced into them in order to assess the substituent effect on azo bond cleavage. While the amount of 3-ABA was nearly the same for all the azo compounds, decomposition of azo compounds increased according to the number of hydroxy groups. Furthermore, a methoxyl-radical-adding product was detected from AZO2. These results suggested that the hydroxy group accelerates not azo bond cleavage but the other decomposition pathway.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" 15","pages":" 3595-3600"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ob/d5ob00003c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob00003c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Caged compounds whose chemical bonds are cleavable by specific stimuli are useful tools for life science research because they facilitate control of various biological activities spatiotemporally. Although caged compounds activatable by hard X-rays can be employed for control in deep tissue owing to the high bio-permeability of X-rays, chemical bond cleavage by ionizing radiation has not been investigated adequately. Previously, we demonstrated that an azo bond tethered to a rhodamine scaffold can be efficiently cleaved by hydrated electrons, which is one of the radiolysis products of water, to release rhodamine. In this study, we synthesized novel azo benzene derivatives, AZO1–4, which can release 3-aminobenzamide (3-ABA), a poly (ADP-ribose) polymerase (PARP) inhibitor, and hydroxy groups or amino groups were introduced into them in order to assess the substituent effect on azo bond cleavage. While the amount of 3-ABA was nearly the same for all the azo compounds, decomposition of azo compounds increased according to the number of hydroxy groups. Furthermore, a methoxyl-radical-adding product was detected from AZO2. These results suggested that the hydroxy group accelerates not azo bond cleavage but the other decomposition pathway.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信