Tuo Wang , Mou Zhang , Nana Jiang , Xinlei Jiang , Nan Li , Fernanda Leite Lobo , Mei Chen , Xin Wang
{"title":"Enhanced ammonium oxidation and iron cycle of Feammox under micro-oxygen condition","authors":"Tuo Wang , Mou Zhang , Nana Jiang , Xinlei Jiang , Nan Li , Fernanda Leite Lobo , Mei Chen , Xin Wang","doi":"10.1016/j.envres.2025.121443","DOIUrl":null,"url":null,"abstract":"<div><div>Autotrophic anaerobic ammonium oxidation coupled to Fe(III) reduction (Feammox) is a promising technology for treating low C/N wastewater. However, Feammox still faces bottlenecks of slow ammonium oxidation rate and the continuous supply of Fe(III) source. This study adopts micro-oxygen strategy to overcome these obstacles. Micro-oxygen increased the ammonium oxidation rate up to 5.7 times higher than under anaerobic condition, and drove the iron cycle in the form of vivianite [Fe(II)] and leucophosphite [Fe(III)]. Furthermore, it was confirmed that the ammonium oxidation in Feammox relies on ammonia monooxygenase (AMO), as evidenced by 10 times increase in the relative <em>amo</em> expression and 1.2 times increase in AMO activity under micro-oxygen compared to anaerobic condition. Additionally, this approach enhanced the growth and co-metabolism of functional bacteria. Long-term experiments demonstrated the sustainability of the Feammox system with iron cycle under micro-oxygen condition. These findings provide valuable insights into the practical application of Feammox process.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"275 ","pages":"Article 121443"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125006942","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Autotrophic anaerobic ammonium oxidation coupled to Fe(III) reduction (Feammox) is a promising technology for treating low C/N wastewater. However, Feammox still faces bottlenecks of slow ammonium oxidation rate and the continuous supply of Fe(III) source. This study adopts micro-oxygen strategy to overcome these obstacles. Micro-oxygen increased the ammonium oxidation rate up to 5.7 times higher than under anaerobic condition, and drove the iron cycle in the form of vivianite [Fe(II)] and leucophosphite [Fe(III)]. Furthermore, it was confirmed that the ammonium oxidation in Feammox relies on ammonia monooxygenase (AMO), as evidenced by 10 times increase in the relative amo expression and 1.2 times increase in AMO activity under micro-oxygen compared to anaerobic condition. Additionally, this approach enhanced the growth and co-metabolism of functional bacteria. Long-term experiments demonstrated the sustainability of the Feammox system with iron cycle under micro-oxygen condition. These findings provide valuable insights into the practical application of Feammox process.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.