Sex-Specific Markers of Neuroinflammation and Neurodegeneration in the Spinal Cord Proteome of the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Liam M Koehn, Joel R Steele, Ralf B Schittenhelm, Joseph A Nicolazzo
{"title":"Sex-Specific Markers of Neuroinflammation and Neurodegeneration in the Spinal Cord Proteome of the SOD1<sup>G93A</sup> Mouse Model of Amyotrophic Lateral Sclerosis.","authors":"Liam M Koehn, Joel R Steele, Ralf B Schittenhelm, Joseph A Nicolazzo","doi":"10.1021/acs.jproteome.4c00990","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has no cure. The underlying mechanistic details of sex differences in the ALS spinal cord, the site of disease onset, are not understood to an extent that could guide novel drug development. To address this, the spinal cords of 120-day-old wild-type (WT) and SOD1<sup>G93A</sup> (familial mouse model of ALS with mutant superoxide dismutase 1) mice were subjected to untargeted, quantitative proteomics using tandem mass tag acquisition on high-resolution mass spectrometric instrumentation. Compared to WT, both male and female SOD1<sup>G93A</sup> spinal cords exhibited an upregulation of neuroinflammatory cascades of both peripheral and central origins, as well as a downregulation of proteins reflective of death and dysfunction of cells within the spinal cord. However, female and male SOD1<sup>G93A</sup> mouse spinal cords exhibited sex-specific differences in proteins compared to respective WT that related to immune response, as well as cellular structure, function, and homeostasis. The proteomic datasets presented provide entire cohort and sex-specific spinal cord drug targets and disease biomarkers in the SOD1<sup>G93A</sup> mouse model of ALS that may guide future drug development and sex selection in preclinical study designs utilizing the SOD1<sup>G93A</sup> model.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00990","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that has no cure. The underlying mechanistic details of sex differences in the ALS spinal cord, the site of disease onset, are not understood to an extent that could guide novel drug development. To address this, the spinal cords of 120-day-old wild-type (WT) and SOD1G93A (familial mouse model of ALS with mutant superoxide dismutase 1) mice were subjected to untargeted, quantitative proteomics using tandem mass tag acquisition on high-resolution mass spectrometric instrumentation. Compared to WT, both male and female SOD1G93A spinal cords exhibited an upregulation of neuroinflammatory cascades of both peripheral and central origins, as well as a downregulation of proteins reflective of death and dysfunction of cells within the spinal cord. However, female and male SOD1G93A mouse spinal cords exhibited sex-specific differences in proteins compared to respective WT that related to immune response, as well as cellular structure, function, and homeostasis. The proteomic datasets presented provide entire cohort and sex-specific spinal cord drug targets and disease biomarkers in the SOD1G93A mouse model of ALS that may guide future drug development and sex selection in preclinical study designs utilizing the SOD1G93A model.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信