Yinan Shu, Zoltan Varga, Dayou Zhang, Qinghui Meng, Aiswarya M Parameswaran, Jian-Ge Zhou, Donald G Truhlar
{"title":"Learning Multiple Potential Energy Surfaces by Automated Discovery of a Compatible Representation.","authors":"Yinan Shu, Zoltan Varga, Dayou Zhang, Qinghui Meng, Aiswarya M Parameswaran, Jian-Ge Zhou, Donald G Truhlar","doi":"10.1021/acs.jctc.5c00178","DOIUrl":null,"url":null,"abstract":"<p><p>Creating analytic representations of multiple potential energy surfaces for modeling electronically nonadiabatic processes is a major challenge being addressed in various ways by the chemical dynamics community. In this work, we introduce a new method that can achieve convenient learning of multiple potential energy surfaces (PESs) and their gradients (negatives of the forces) for a polyatomic system. This new method, called compatibilization by deep neural network (CDNN), is demonstrated to be accurate and, even more importantly, to be automatic. The only required input is a database with geometries and potential energies. The method produces a matrix, called the compatible potential energy matrix (CPEM), that may be interpreted as the electronic Hamiltonian in an implicit nonadiabatic basis, and the analytic adiabatic potential energy surfaces and their gradients are obtained by diagonalization and automatic differentiation. We show that the CPEM, which is neither adiabatic nor necessarily diabatic, can be discovered automatically during the learning procedure by the special design of a CDNN architecture. We believe that the CDNN method will be very useful in practice for learning coupled PESs for polyatomic systems because it is accurate and fully automatic.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"3342-3352"},"PeriodicalIF":5.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00178","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Creating analytic representations of multiple potential energy surfaces for modeling electronically nonadiabatic processes is a major challenge being addressed in various ways by the chemical dynamics community. In this work, we introduce a new method that can achieve convenient learning of multiple potential energy surfaces (PESs) and their gradients (negatives of the forces) for a polyatomic system. This new method, called compatibilization by deep neural network (CDNN), is demonstrated to be accurate and, even more importantly, to be automatic. The only required input is a database with geometries and potential energies. The method produces a matrix, called the compatible potential energy matrix (CPEM), that may be interpreted as the electronic Hamiltonian in an implicit nonadiabatic basis, and the analytic adiabatic potential energy surfaces and their gradients are obtained by diagonalization and automatic differentiation. We show that the CPEM, which is neither adiabatic nor necessarily diabatic, can be discovered automatically during the learning procedure by the special design of a CDNN architecture. We believe that the CDNN method will be very useful in practice for learning coupled PESs for polyatomic systems because it is accurate and fully automatic.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.