Deep reinforcement learning can promote sustainable human behaviour in a common-pool resource problem

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Raphael Koster, Miruna Pîslar, Andrea Tacchetti, Jan Balaguer, Leqi Liu, Romuald Elie, Oliver P. Hauser, Karl Tuyls, Matt Botvinick, Christopher Summerfield
{"title":"Deep reinforcement learning can promote sustainable human behaviour in a common-pool resource problem","authors":"Raphael Koster, Miruna Pîslar, Andrea Tacchetti, Jan Balaguer, Leqi Liu, Romuald Elie, Oliver P. Hauser, Karl Tuyls, Matt Botvinick, Christopher Summerfield","doi":"10.1038/s41467-025-58043-7","DOIUrl":null,"url":null,"abstract":"<p>A canonical social dilemma arises when resources are allocated to people, who can either reciprocate with interest or keep the proceeds. The right resource allocation mechanisms can encourage levels of reciprocation that sustain the commons. Here, in an iterated multiplayer trust game, we use deep reinforcement learning (RL) to design a social planner that promotes sustainable contributions from human participants. We first trained neural networks to behave like human players, creating a stimulated economy that allows us to study the dynamics of receipt and reciprocation. We use RL to train a mechanism to maximise aggregate return to players. The RL mechanism discovers a redistributive policy that leads to a large but also more equal surplus. The mechanism outperforms baseline mechanisms by conditioning its generosity on available resources and temporarily sanctioning defectors. Examining the RL policy allows us to develop a similar but explainable mechanism that is more popular among players.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58043-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A canonical social dilemma arises when resources are allocated to people, who can either reciprocate with interest or keep the proceeds. The right resource allocation mechanisms can encourage levels of reciprocation that sustain the commons. Here, in an iterated multiplayer trust game, we use deep reinforcement learning (RL) to design a social planner that promotes sustainable contributions from human participants. We first trained neural networks to behave like human players, creating a stimulated economy that allows us to study the dynamics of receipt and reciprocation. We use RL to train a mechanism to maximise aggregate return to players. The RL mechanism discovers a redistributive policy that leads to a large but also more equal surplus. The mechanism outperforms baseline mechanisms by conditioning its generosity on available resources and temporarily sanctioning defectors. Examining the RL policy allows us to develop a similar but explainable mechanism that is more popular among players.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信