Core reinforcement strategy enhances the foliar stability and efficacy of electrostatic self-assembled microcapsules

IF 3.8 1区 农林科学 Q1 AGRONOMY
Xing Chen, Junpeng Yang, Lingmin Xia, Rui Yang, Chaoyang Ding, Xueping Huang, Yu Chen, Jian Luo
{"title":"Core reinforcement strategy enhances the foliar stability and efficacy of electrostatic self-assembled microcapsules","authors":"Xing Chen, Junpeng Yang, Lingmin Xia, Rui Yang, Chaoyang Ding, Xueping Huang, Yu Chen, Jian Luo","doi":"10.1002/ps.8792","DOIUrl":null,"url":null,"abstract":"At present, it is vital to develop a stable and efficient pesticide delivery system to optimize pesticide foliar utilization, which could improve control efficacy, enhance resistance to adverse climates, and prolong foliar retention. In this study, reaction monomers methylene diphenyl diisocyanate (MDI) and polycaprolactone diol (PCL) were used to synthesize a polymer network structure for loading the organic phase of pesticides in a micron-reactor, then the shell was formed by sodium lignosulfonate (SL) and didecyl dimethyl ammonium chloride (DDAC) through electrostatic self-assembly, resulting in self-assembled microcapsules and efficient pesticide loading, and the stability and efficacy were discussed.","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":"31 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pest Management Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ps.8792","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

At present, it is vital to develop a stable and efficient pesticide delivery system to optimize pesticide foliar utilization, which could improve control efficacy, enhance resistance to adverse climates, and prolong foliar retention. In this study, reaction monomers methylene diphenyl diisocyanate (MDI) and polycaprolactone diol (PCL) were used to synthesize a polymer network structure for loading the organic phase of pesticides in a micron-reactor, then the shell was formed by sodium lignosulfonate (SL) and didecyl dimethyl ammonium chloride (DDAC) through electrostatic self-assembly, resulting in self-assembled microcapsules and efficient pesticide loading, and the stability and efficacy were discussed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pest Management Science
Pest Management Science 农林科学-昆虫学
CiteScore
7.90
自引率
9.80%
发文量
553
审稿时长
4.8 months
期刊介绍: Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management. Published for SCI by John Wiley & Sons Ltd.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信