Cation-in-Mesopore Complex for 20 Ah-Level Aqueous Battery

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lipeng Wang, Bao Zhang, Wanhai Zhou, Hongpeng Li, Haobo Dong, Hongrun Jin, Zefang Yang, Wei Li, Zaiwang Zhao, Dongyuan Zhao, Dongliang Chao
{"title":"Cation-in-Mesopore Complex for 20 Ah-Level Aqueous Battery","authors":"Lipeng Wang,&nbsp;Bao Zhang,&nbsp;Wanhai Zhou,&nbsp;Hongpeng Li,&nbsp;Haobo Dong,&nbsp;Hongrun Jin,&nbsp;Zefang Yang,&nbsp;Wei Li,&nbsp;Zaiwang Zhao,&nbsp;Dongyuan Zhao,&nbsp;Dongliang Chao","doi":"10.1002/anie.202501010","DOIUrl":null,"url":null,"abstract":"<p>Metallic Zn-based aqueous batteries (ZABs) have arisen as one of the most promising safe energy storage solutions, yet practical development, especially for the Ah-level ZABs, is severely plagued by unmanageable side reactions and notorious dendrite proliferation. Here, we propose a cation-in-mesopore (CiM) complex chemistry by confining Zn<sup>2+</sup> within single-mesopore cavities to construct a novel paradigm of 20 Ah-level ZABs. Molecule dynamic and X-ray absorption near-edge structure analyses reveal that the single-mesopore SiO<sub>2</sub> (smSiO<sub>2</sub>) traps Zn<sup>2+</sup>, replacing H<sub>2</sub>O molecules in the primary sheath and forming Zn<sup>2+</sup>–smSiO<sub>2</sub> complexes. In situ electrochemical digital holography, in situ interface Fourier-transform infrared spectroscopy, and H-bonds density analyses clearly confirm that Zn<sup>2+</sup>–smSiO<sub>2</sub> complexes migrate and adhere onto the metallic Zn, facilitating the formation of mesopore weak H-bonds interface by disrupting the aggregation of solvated H<sub>2</sub>O. Consequently, the Zn anode operates over 800 h under 55% depth of discharge, effectively suppressing H<sub>2</sub>O degradation and dendrite growth. The Zn//VO<sub>2</sub> pouch battery demonstrates capacities of 20.5 Ah at 0.2 A g<sup>−1</sup> and 8.59 Ah at 1 A g<sup>−1</sup>, and energy density of 65 Wh kg<sup>−1</sup> and 96 Wh L<sup>−1</sup>. The proposed cation-in-mesopore complex chemistry may mark a substantial step forward towards more sustainable and reliable ZABs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 22","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic Zn-based aqueous batteries (ZABs) have arisen as one of the most promising safe energy storage solutions, yet practical development, especially for the Ah-level ZABs, is severely plagued by unmanageable side reactions and notorious dendrite proliferation. Here, we propose a cation-in-mesopore (CiM) complex chemistry by confining Zn2+ within single-mesopore cavities to construct a novel paradigm of 20 Ah-level ZABs. Molecule dynamic and X-ray absorption near-edge structure analyses reveal that the single-mesopore SiO2 (smSiO2) traps Zn2+, replacing H2O molecules in the primary sheath and forming Zn2+–smSiO2 complexes. In situ electrochemical digital holography, in situ interface Fourier-transform infrared spectroscopy, and H-bonds density analyses clearly confirm that Zn2+–smSiO2 complexes migrate and adhere onto the metallic Zn, facilitating the formation of mesopore weak H-bonds interface by disrupting the aggregation of solvated H2O. Consequently, the Zn anode operates over 800 h under 55% depth of discharge, effectively suppressing H2O degradation and dendrite growth. The Zn//VO2 pouch battery demonstrates capacities of 20.5 Ah at 0.2 A g−1 and 8.59 Ah at 1 A g−1, and energy density of 65 Wh kg−1 and 96 Wh L−1. The proposed cation-in-mesopore complex chemistry may mark a substantial step forward towards more sustainable and reliable ZABs.

Abstract Image

中孔阳离子配合物用于20ah级水溶液电池
金属锌基水电池(ZABs)已成为最有前途的安全储能解决方案之一,但实际开发,特别是ah级ZABs,严重受到难以控制的副反应和臭名昭著的枝晶增殖的困扰。在这里,我们提出了一个阳离子-中孔(CiM)复合化学,通过将Zn2+限制在单介孔腔内来构建20个ah级ZABs的新范式。分子动力学和x射线吸收近边结构分析表明,单介孔SiO2 (smSiO2)捕获Zn2+,取代原鞘层中的H2O分子,形成Zn2+-smSiO2配合物。原位电化学数字全息、原位界面傅里叶变换红外光谱和氢键密度分析清楚地证实,Zn2+-smSiO2配合物迁移和粘附在金属Zn上,通过破坏溶剂化H2O的聚集,促进中孔弱氢键界面的形成。因此,在55%的放电深度下,锌阳极工作超过800小时,有效地抑制了H2O的降解和枝晶的生长。该电池在0.2 A g−1时容量为20.5 Ah,在1 A g−1时容量为8.59 Ah,能量密度为65 Wh kg−1和96 Wh L−1。提出的中孔阳离子复合化学可能标志着向更可持续和可靠的ZABs迈出了实质性的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信