Ion-Docking Effect Enabling Rechargeable High-Voltage Magnesium-Iodine/Chlorine Battery

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Longyuan Guo, Tong Li, Ting Yang, Zhenglin Hu, Aoxuan Wang, Jiayan Luo
{"title":"Ion-Docking Effect Enabling Rechargeable High-Voltage Magnesium-Iodine/Chlorine Battery","authors":"Longyuan Guo, Tong Li, Ting Yang, Zhenglin Hu, Aoxuan Wang, Jiayan Luo","doi":"10.1002/anie.202503209","DOIUrl":null,"url":null,"abstract":"Rechargeable magnesium (Mg) batteries represent a promising energy storage system by offering low cost and dendrite-less propensity. However, the limited selection of cathode materials, and often with low voltage and capacity, constrain Mg batteries. Herein, by exploiting the ion-docking effect between two halogen species — iodine cations (I+) and chlorine anions (Cl-) — we activate the cathodic activity of halogens and develop a magnesium-iodine/chlorine (Mg-I/Cl) battery prototype with high energy and power density. The ion-docking effect enables I+ and Cl- to mutually balance and disperse their charges, weakens the coordination strength between Cl- and Mg2+ while enhances the stability of I+, thus facilitating the multi-electron (2+1/3) redox reactions of halogens. We also find the solvation state of iodine species determine the reaction process of the I0/I3-/I- redox couples. The here-developed magnesium-iodine/chlorine battery features an impressively high discharge plateau of up to 3.0 V with a high capacity exceeding 400 mAh g-1, and demonstrates a stable lifespan for 500 cycles, with the ability of ultra-fast charging at 20C and low-temperature cycling under -30 °C. These findings may provide new insights for developing high-energy-density Mg battery systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"16 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503209","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable magnesium (Mg) batteries represent a promising energy storage system by offering low cost and dendrite-less propensity. However, the limited selection of cathode materials, and often with low voltage and capacity, constrain Mg batteries. Herein, by exploiting the ion-docking effect between two halogen species — iodine cations (I+) and chlorine anions (Cl-) — we activate the cathodic activity of halogens and develop a magnesium-iodine/chlorine (Mg-I/Cl) battery prototype with high energy and power density. The ion-docking effect enables I+ and Cl- to mutually balance and disperse their charges, weakens the coordination strength between Cl- and Mg2+ while enhances the stability of I+, thus facilitating the multi-electron (2+1/3) redox reactions of halogens. We also find the solvation state of iodine species determine the reaction process of the I0/I3-/I- redox couples. The here-developed magnesium-iodine/chlorine battery features an impressively high discharge plateau of up to 3.0 V with a high capacity exceeding 400 mAh g-1, and demonstrates a stable lifespan for 500 cycles, with the ability of ultra-fast charging at 20C and low-temperature cycling under -30 °C. These findings may provide new insights for developing high-energy-density Mg battery systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信