In situ light-driven pH modulation for NMR studies

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ravula Thirupathi
{"title":"In situ light-driven pH modulation for NMR studies","authors":"Ravula Thirupathi","doi":"10.1002/anie.202501440","DOIUrl":null,"url":null,"abstract":"Proton exchange is a fundamental chemical event, and NMR provides the most direct readout of protonation events with site-specific resolution. Conventional approaches require manual titration of sample pH to collect a series of NMR spectra at different pH values. This requires extensive sample handling and often results in significant sample loss, leading to reduced signal or the need to prepare additional samples. Here, we introduce a novel approach to control pH in NMR samples using water soluble photoacids, which alter the pH of the solution from near neutral to acidic pH upon in situ photo-illumination. We show that the solution pH can be precisely controlled by choice of illumination wavelength and intensity and sufficient protons are released from the photoacid to achieve meaningful pH change in samples where the molecule of interest has significant buffering capacity, such as a >100 µM protein sample. The pH is monitored in situ using internal standards with pH-sensitive chemical shifts. This method enables precise, calibrated, non-invasive change of sample pH within an NMR magnet, dramatically reducing the necessary sample handling. These findings highlight the potential of light-induced pH control in NMR experiments and increase the robustness and reliability of pH-dependent studies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"93 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202501440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proton exchange is a fundamental chemical event, and NMR provides the most direct readout of protonation events with site-specific resolution. Conventional approaches require manual titration of sample pH to collect a series of NMR spectra at different pH values. This requires extensive sample handling and often results in significant sample loss, leading to reduced signal or the need to prepare additional samples. Here, we introduce a novel approach to control pH in NMR samples using water soluble photoacids, which alter the pH of the solution from near neutral to acidic pH upon in situ photo-illumination. We show that the solution pH can be precisely controlled by choice of illumination wavelength and intensity and sufficient protons are released from the photoacid to achieve meaningful pH change in samples where the molecule of interest has significant buffering capacity, such as a >100 µM protein sample. The pH is monitored in situ using internal standards with pH-sensitive chemical shifts. This method enables precise, calibrated, non-invasive change of sample pH within an NMR magnet, dramatically reducing the necessary sample handling. These findings highlight the potential of light-induced pH control in NMR experiments and increase the robustness and reliability of pH-dependent studies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信