{"title":"Highly Effective Near-Infrared to Blue Triplet–Triplet Annihilation Upconversion Nanoparticles for Reversible Photobiocatalysis","authors":"Yi Peng, Jia-Yao Li, Fang Qi, Dong-Xue Guo, Ying-Ze Li, Hong-Juan Feng, Lin-Han Jiang, Ming-Yu Zhang, Yun-Xi Liu, Le Zeng, Ling Huang","doi":"10.1021/acs.nanolett.5c00117","DOIUrl":null,"url":null,"abstract":"Near-infrared (NIR) to blue triplet–triplet annihilation upconversion (TTA-UC) shows unique applications in optogenetics, photocaging, and stereoscopic three-dimensional printing, etc. Here, we disclose a unique strategy that narrowed the energy gap between the triplet states of the NIR photosensitizer and annihilator, with the aim of maximally suppressing the photoexcitation energy loss during TET. Hence, we produced a NIR-to-blue TTA-UC pair that exhibited an exceptionally large anti-Stokes shift (0.76 eV) and achieved a record upconversion quantum yield (15.5%, out of 50%). We further prepared for the first time small, water-dispersed, oxygen-resistant upconversion nanoparticles with an upconversion quantum yield of up to 1.8%. Such upconverted nanoparticles were successfully utilized as NIR-responsive photocatalysts for the reversible transformation of enzyme cofactor NAD<sup>+</sup>/NADH in a photobiocatalytic system in air-saturated aqueous solutions.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"34 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00117","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Near-infrared (NIR) to blue triplet–triplet annihilation upconversion (TTA-UC) shows unique applications in optogenetics, photocaging, and stereoscopic three-dimensional printing, etc. Here, we disclose a unique strategy that narrowed the energy gap between the triplet states of the NIR photosensitizer and annihilator, with the aim of maximally suppressing the photoexcitation energy loss during TET. Hence, we produced a NIR-to-blue TTA-UC pair that exhibited an exceptionally large anti-Stokes shift (0.76 eV) and achieved a record upconversion quantum yield (15.5%, out of 50%). We further prepared for the first time small, water-dispersed, oxygen-resistant upconversion nanoparticles with an upconversion quantum yield of up to 1.8%. Such upconverted nanoparticles were successfully utilized as NIR-responsive photocatalysts for the reversible transformation of enzyme cofactor NAD+/NADH in a photobiocatalytic system in air-saturated aqueous solutions.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.