Progress of 3D Graphene-Based Electrocatalytic Oxygen Evolution Reaction Catalysts

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tong Liu, Junhua You, Yao Zhao, Jie Zhang, Jian Wang
{"title":"Progress of 3D Graphene-Based Electrocatalytic Oxygen Evolution Reaction Catalysts","authors":"Tong Liu, Junhua You, Yao Zhao, Jie Zhang, Jian Wang","doi":"10.1021/acs.langmuir.4c05195","DOIUrl":null,"url":null,"abstract":"Electrocatalytic water splitting is a clean and feasible method for hydrogen production, expected to become a key technology for meeting clean energy demands. Transition metal-based nanoparticles, including single-atom catalysts and their compounds, are widely used in electrocatalytic water splitting, but they often suffer from issues like easy agglomeration and poor conductivity. The integration of these nanoparticles with three-dimensional (3D) graphene enhances conductivity and prevents agglomeration, while improving the adsorption and desorption rates of reactants and intermediates on the catalyst surface during electrocatalytic water splitting, thereby boosting energy efficiency. This paper reviews the preparation methods of graphene-based supported electrocatalysts and their applications in oxygen evolution reactions (OERs), further discussing the mechanism by which 3D graphene improves OER performance.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"95 4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05195","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic water splitting is a clean and feasible method for hydrogen production, expected to become a key technology for meeting clean energy demands. Transition metal-based nanoparticles, including single-atom catalysts and their compounds, are widely used in electrocatalytic water splitting, but they often suffer from issues like easy agglomeration and poor conductivity. The integration of these nanoparticles with three-dimensional (3D) graphene enhances conductivity and prevents agglomeration, while improving the adsorption and desorption rates of reactants and intermediates on the catalyst surface during electrocatalytic water splitting, thereby boosting energy efficiency. This paper reviews the preparation methods of graphene-based supported electrocatalysts and their applications in oxygen evolution reactions (OERs), further discussing the mechanism by which 3D graphene improves OER performance.

Abstract Image

基于三维石墨烯的电催化氧进化反应催化剂的研究进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信