Mechanism of interfacial Si enrichment in hindering Fe-Zn alloying and its morphological evolution during annealing in Zn-coated Si-bearing steels

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hyungkwon Park, Seong Hoon Kim, Jin-Jong Lee, Ki-Hwan Kwon, Kyeong-Won Kim, Chang-Hoon Lee, Yeong-Do Park, Tae-Ho Lee
{"title":"Mechanism of interfacial Si enrichment in hindering Fe-Zn alloying and its morphological evolution during annealing in Zn-coated Si-bearing steels","authors":"Hyungkwon Park, Seong Hoon Kim, Jin-Jong Lee, Ki-Hwan Kwon, Kyeong-Won Kim, Chang-Hoon Lee, Yeong-Do Park, Tae-Ho Lee","doi":"10.1016/j.jmst.2025.02.028","DOIUrl":null,"url":null,"abstract":"Retained austenite plays a significant role in third-generation advanced high-strength steels (AHSS 3. Gen.), renowned for their excellent combination of strength and ductility. Silicon (Si) is a key element in stabilizing retained austenite. However, it introduces challenges in galvannealing and welding processes in Zn-coated steels, such as inhibited Fe-Zn alloying and increased susceptibility to liquid metal embrittlement (LME). This study investigated the mechanism of Si enrichment at the Zn/steel interface and its role in suppressing Fe-Zn interdiffusion during annealing. Using advanced techniques such as high-resolution transmission electron microscopy and atomic probe tomography, and Thermo-Calc DICTRA simulations, we analyzed the diffusion behavior and microstructural evolution in Zn-coated steels with varying Si contents. Si, driven by its low solubility in liquid Zn and Fe-Zn intermetallic phases, accumulates at the interface, forming a Si-enriched region that significantly suppresses Zn diffusion while permitting limited Fe diffusion. Numerical simulations revealed that the Si-enriched layer forms via the drag effect of the Fe-Zn reaction line, progressively concentrating Si at the interface as Zn diffuses. As annealing progresses, the morphology of the Si-enriched region evolves from layered, cloud-like structures to droplets and elongated dendritic forms, driven by Zn penetration and Fe consumption. These findings provide novel insights into the role of Si enrichment in mitigating LME and optimizing the Zn-coated AHSS 3. Gen., paving the way for advancements in automotive material design.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"8 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.02.028","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Retained austenite plays a significant role in third-generation advanced high-strength steels (AHSS 3. Gen.), renowned for their excellent combination of strength and ductility. Silicon (Si) is a key element in stabilizing retained austenite. However, it introduces challenges in galvannealing and welding processes in Zn-coated steels, such as inhibited Fe-Zn alloying and increased susceptibility to liquid metal embrittlement (LME). This study investigated the mechanism of Si enrichment at the Zn/steel interface and its role in suppressing Fe-Zn interdiffusion during annealing. Using advanced techniques such as high-resolution transmission electron microscopy and atomic probe tomography, and Thermo-Calc DICTRA simulations, we analyzed the diffusion behavior and microstructural evolution in Zn-coated steels with varying Si contents. Si, driven by its low solubility in liquid Zn and Fe-Zn intermetallic phases, accumulates at the interface, forming a Si-enriched region that significantly suppresses Zn diffusion while permitting limited Fe diffusion. Numerical simulations revealed that the Si-enriched layer forms via the drag effect of the Fe-Zn reaction line, progressively concentrating Si at the interface as Zn diffuses. As annealing progresses, the morphology of the Si-enriched region evolves from layered, cloud-like structures to droplets and elongated dendritic forms, driven by Zn penetration and Fe consumption. These findings provide novel insights into the role of Si enrichment in mitigating LME and optimizing the Zn-coated AHSS 3. Gen., paving the way for advancements in automotive material design.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信