Drug-Loaded Hybrid Tissue Engineered Heart Valve with Antithrombosis and Immunomodulation Performance

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaoge Bai, Bangquan Wei, Lepeng Chen, Xueyu Huang, Kaiyang Huang, Li Yang, Cheng Zheng, Yunbing Wang
{"title":"Drug-Loaded Hybrid Tissue Engineered Heart Valve with Antithrombosis and Immunomodulation Performance","authors":"Shaoge Bai, Bangquan Wei, Lepeng Chen, Xueyu Huang, Kaiyang Huang, Li Yang, Cheng Zheng, Yunbing Wang","doi":"10.1021/acsami.4c22022","DOIUrl":null,"url":null,"abstract":"High thrombogenicity and shortened lifespan have limited the application of mechanical valves and bioprosthetic valves, respectively. Tissue engineering heart valve (TEHV) holds significant potential as a favorable prosthetic valve to overcome the limitations of the current prosthetic valves, featuring the capabilities of self-pairing and adaptive remodeling. However, TEHVs, mainly fabricated from decellularized xenogeneic heart valves (DHV), still have challenges such as thrombosis, inferior endothelialization, and immune responses. Herein, a drug-loaded glycoprotein-like network hybrid TEHV (OHSC-V) was engineered through the one-pot hybridization of DHV, oxidized HA (OHA), phenylboronic acid grafted silk fibroin (SF-PBA), and curcumin (Cur), where OHA served as a biocompatible backbone to cross-link the DHV and the conjugate of SF-PBA and Cur. With the introduction of the multifunctional drug-loaded glycoprotein-like network, OHSC-V not only effectively inhibited the adsorption of plasma proteins, blood cells, platelets, and thrombosis but also facilitated the endothelialization of TEHV. Furthermore, the OHSC-V eliminated the reactive oxygen species and responsively released Cur to modulate the immune responses. Moreover, the calcification degree of hybrid TEHVs was markedly lower than that of glutaraldehyde cross-linked DHV after 90 days of implantation. Overall, OHSC-V demonstrated enhanced performance of antithrombosis, endothelialization, immunomodulation, and anticalcification, showcasing the further potential for application exploration.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"27 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c22022","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High thrombogenicity and shortened lifespan have limited the application of mechanical valves and bioprosthetic valves, respectively. Tissue engineering heart valve (TEHV) holds significant potential as a favorable prosthetic valve to overcome the limitations of the current prosthetic valves, featuring the capabilities of self-pairing and adaptive remodeling. However, TEHVs, mainly fabricated from decellularized xenogeneic heart valves (DHV), still have challenges such as thrombosis, inferior endothelialization, and immune responses. Herein, a drug-loaded glycoprotein-like network hybrid TEHV (OHSC-V) was engineered through the one-pot hybridization of DHV, oxidized HA (OHA), phenylboronic acid grafted silk fibroin (SF-PBA), and curcumin (Cur), where OHA served as a biocompatible backbone to cross-link the DHV and the conjugate of SF-PBA and Cur. With the introduction of the multifunctional drug-loaded glycoprotein-like network, OHSC-V not only effectively inhibited the adsorption of plasma proteins, blood cells, platelets, and thrombosis but also facilitated the endothelialization of TEHV. Furthermore, the OHSC-V eliminated the reactive oxygen species and responsively released Cur to modulate the immune responses. Moreover, the calcification degree of hybrid TEHVs was markedly lower than that of glutaraldehyde cross-linked DHV after 90 days of implantation. Overall, OHSC-V demonstrated enhanced performance of antithrombosis, endothelialization, immunomodulation, and anticalcification, showcasing the further potential for application exploration.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信