{"title":"Servo robust control of cyber–physical systems with physical uncertainty and cyber interference","authors":"Rongrong Yu , Xu Zhao , Mingxin Liu , Ye-Hwa Chen , Ying Tian","doi":"10.1016/j.isatra.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Cyber-physical system (CPS) is a complex system that integrates cyber, computer system, and physical system. Due to the large amount of information transmitted by CPS in real time, there are physical uncertainty and serious security risks, so how to accurately and effectively realize the accurate control of the CPS becomes a challenging task. In this paper, we comprehensively consider the physical uncertainty and cyber interference that the CPS may face, and then design a Servo Robust Control (SRC). The control design is divided into two phases. In the first phase, a novel control scheme is proposed to ensure that the system can maintain stable performance in the face of physical uncertainty and cyber interference. The second phase is the optimal design of control parameters. Since the selection of control parameters seriously affects the performance of the system, multi-objective parameter optimization methods (non-cooperative game and Stackelberg strategy) are used to study the optimal selection of control parameters. Finally, the proposed SRC is applied to a typical CPS (i.e., autonomous vehicle) for verification. The effectiveness and superiority of this method are verified by comparing with other control methods.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"159 ","pages":"Pages 55-65"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000928","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cyber-physical system (CPS) is a complex system that integrates cyber, computer system, and physical system. Due to the large amount of information transmitted by CPS in real time, there are physical uncertainty and serious security risks, so how to accurately and effectively realize the accurate control of the CPS becomes a challenging task. In this paper, we comprehensively consider the physical uncertainty and cyber interference that the CPS may face, and then design a Servo Robust Control (SRC). The control design is divided into two phases. In the first phase, a novel control scheme is proposed to ensure that the system can maintain stable performance in the face of physical uncertainty and cyber interference. The second phase is the optimal design of control parameters. Since the selection of control parameters seriously affects the performance of the system, multi-objective parameter optimization methods (non-cooperative game and Stackelberg strategy) are used to study the optimal selection of control parameters. Finally, the proposed SRC is applied to a typical CPS (i.e., autonomous vehicle) for verification. The effectiveness and superiority of this method are verified by comparing with other control methods.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.