Geometric deep learning and multiple-instance learning for 3D cell-shape profiling.

Matt De Vries, Lucas G Dent, Nathan Curry, Leo Rowe-Brown, Vicky Bousgouni, Olga Fourkioti, Reed Naidoo, Hugh Sparks, Adam Tyson, Chris Dunsby, Chris Bakal
{"title":"Geometric deep learning and multiple-instance learning for 3D cell-shape profiling.","authors":"Matt De Vries, Lucas G Dent, Nathan Curry, Leo Rowe-Brown, Vicky Bousgouni, Olga Fourkioti, Reed Naidoo, Hugh Sparks, Adam Tyson, Chris Dunsby, Chris Bakal","doi":"10.1016/j.cels.2025.101229","DOIUrl":null,"url":null,"abstract":"<p><p>The three-dimensional (3D) morphology of cells emerges from complex cellular and environmental interactions, serving as an indicator of cell state and function. In this study, we used deep learning to discover morphology representations and understand cell states. This study introduced MorphoMIL, a computational pipeline combining geometric deep learning and attention-based multiple-instance learning to profile 3D cell and nuclear shapes. We used 3D point-cloud input and captured morphological signatures at single-cell and population levels, accounting for phenotypic heterogeneity. We applied these methods to over 95,000 melanoma cells treated with clinically relevant and cytoskeleton-modulating chemical and genetic perturbations. The pipeline accurately predicted drug perturbations and cell states. Our framework revealed subtle morphological changes associated with perturbations, key shapes correlating with signaling activity, and interpretable insights into cell-state heterogeneity. MorphoMIL demonstrated superior performance and generalized across diverse datasets, paving the way for scalable, high-throughput morphological profiling in drug discovery. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"16 3","pages":"101229"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The three-dimensional (3D) morphology of cells emerges from complex cellular and environmental interactions, serving as an indicator of cell state and function. In this study, we used deep learning to discover morphology representations and understand cell states. This study introduced MorphoMIL, a computational pipeline combining geometric deep learning and attention-based multiple-instance learning to profile 3D cell and nuclear shapes. We used 3D point-cloud input and captured morphological signatures at single-cell and population levels, accounting for phenotypic heterogeneity. We applied these methods to over 95,000 melanoma cells treated with clinically relevant and cytoskeleton-modulating chemical and genetic perturbations. The pipeline accurately predicted drug perturbations and cell states. Our framework revealed subtle morphological changes associated with perturbations, key shapes correlating with signaling activity, and interpretable insights into cell-state heterogeneity. MorphoMIL demonstrated superior performance and generalized across diverse datasets, paving the way for scalable, high-throughput morphological profiling in drug discovery. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信