Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data.

IF 3.1 Q2 PSYCHIATRY
Journal of psychopathology and clinical science Pub Date : 2025-05-01 Epub Date: 2025-03-20 DOI:10.1037/abn0000984
Nicholas A Livingston, Amar D Mandavia, Anne N Banducci, Rebecca Sistad Hall, Lauren B Loeffel, Michael Davenport, Brittany Mathes-Winnicki, Maria Ting, Clara E Roth, Alexis Sarpong, Noam Newberger, Zig Hinds, Jennifer R Fonda, Daniel Chen, Frank Meng
{"title":"Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data.","authors":"Nicholas A Livingston, Amar D Mandavia, Anne N Banducci, Rebecca Sistad Hall, Lauren B Loeffel, Michael Davenport, Brittany Mathes-Winnicki, Maria Ting, Clara E Roth, Alexis Sarpong, Noam Newberger, Zig Hinds, Jennifer R Fonda, Daniel Chen, Frank Meng","doi":"10.1037/abn0000984","DOIUrl":null,"url":null,"abstract":"<p><p>Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (<i>n</i> = 53,803; January 2019-March 2021) to a matched prepandemic cohort (<i>n</i> = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP methods to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":73914,"journal":{"name":"Journal of psychopathology and clinical science","volume":" ","pages":"448-457"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of psychopathology and clinical science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/abn0000984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP methods to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

利用全国退伍军人健康管理局电子病历数据的自然语言处理识别COVID-19期间阿片类药物复发
需要新的和自动化的阿片类药物使用和复发风险检测手段。可以挖掘非结构化电子病历数据,包括书面进度说明,以获取临床相关信息,包括药物使用情况和阿片类药物使用障碍风险和恢复的复发关键标志。在这项研究中,我们使用自然语言处理(NLP)从退伍军人的电子病历中自动提取阿片类药物复发及其发生的时间。然后,我们通过分析患有OUD的退伍军人中covid -19前/后阿片类药物复发趋势来证明我们的NLP工具的实用性。为了证明这一点,我们分析了107,606名在退伍军人健康管理局注册的退伍军人的数据,比较了一个暴露于大流行的队列(n = 53,803;2019年1月至2021年3月)到匹配的大流行前队列(n = 53,803;2017年10月- 2019年12月)。我们的NLP工具的召回率为75%,准确度为94%,具有中等的灵敏度和良好的特异性。使用NLP工具,我们发现大流行后阿片类药物复发的几率比大流行前的趋势高,尽管患者的精神健康遭遇较少,从中可以得出大流行后复发的实例。在本研究应用该工具,并假设,我们发现阿片类药物复发的风险在大流行后升高。应用NLP方法来识别和监测复发风险,为未来的监测、风险预防和临床结果研究带来了希望。(PsycInfo Database Record (c) 2025 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信