In silico activity and effect of synthetic chalcones on Candida albicans and Candida tropicalis biofilms

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Antonia Thassya Lucas dos Santos , Maria Audilene de Freitas , Maria Lucilene Queiroz da Silva , Francildo dos Santos Silva , Andressa Guilhermino dos Santos , Aparecida Vitória Silva Menêses , Naiza Saraiva Farias , Joara Nályda Pereira Carneiro , Victor Juno Alencar Fonseca , Hélcio Silva dos Santos , Francisco Rogenio da Silva Mendes , Jacilene Silva , Márcia Machado Marinho , Emmanuel Silva Marinho , Henrique Douglas Melo Coutinho , Maria Flaviana Bezerra Morais-Braga
{"title":"In silico activity and effect of synthetic chalcones on Candida albicans and Candida tropicalis biofilms","authors":"Antonia Thassya Lucas dos Santos ,&nbsp;Maria Audilene de Freitas ,&nbsp;Maria Lucilene Queiroz da Silva ,&nbsp;Francildo dos Santos Silva ,&nbsp;Andressa Guilhermino dos Santos ,&nbsp;Aparecida Vitória Silva Menêses ,&nbsp;Naiza Saraiva Farias ,&nbsp;Joara Nályda Pereira Carneiro ,&nbsp;Victor Juno Alencar Fonseca ,&nbsp;Hélcio Silva dos Santos ,&nbsp;Francisco Rogenio da Silva Mendes ,&nbsp;Jacilene Silva ,&nbsp;Márcia Machado Marinho ,&nbsp;Emmanuel Silva Marinho ,&nbsp;Henrique Douglas Melo Coutinho ,&nbsp;Maria Flaviana Bezerra Morais-Braga","doi":"10.1016/j.biochi.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Biofilm formation is considered one of the most important virulence factors for <em>Candida</em> species, which presents an extracellular matrix of polymeric substances that limits the passage of antifungals, leading to fungal resistance. Therefore, the present study investigated the biofilm eradication effect of synthetic chalcones against <em>Candida albicans</em> and <em>Candida tropicalis</em>. Molecular docking studies were conducted to verify the mechanism of action of chalcones on <em>Candida</em> species proteins. The biofilm eradication effect was determined using crystal violet methodology to quantify biomass and Thiazolyl blue tetrazolium bromide (MTT) to verify the influence on metabolic activity. A molecular docking study was also carried out with <em>Candida</em> proteins using the Protein Data Bank repository (<span><span>https://www.rcsb.org/</span><svg><path></path></svg></span>) and Autodocktools™ software. The results showed that (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnona-1,3,6,8-tetraen-5-one (DB-CNM), and (1E,4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (DB-Anisal) were able to eradicate the biomass of <em>C. albicans</em> CA INCQS 40006 (ATCC 10231), while fluconazole only reduced the biomass at the three tested concentrations (IC<sub>50</sub>, IC<sub>50</sub> × 10, and IC<sub>50</sub> × 20) against <em>C. tropicalis</em> CT INCQS 40042 (ATCC 13803). Both chalcones and fluconazole successfully reduced metabolic activity across all tested strains. The molecular docking study concluded that DB-Acetone, DB-Anisal, and DB-CNM exhibited significant affinity energy values toward the binding sites of <em>C. albicans</em> and <em>C. tropicalis</em>. It is concluded that the synthetic chalcones showed promising results in inhibiting <em>Candida</em> spp. biofilm, demonstrating efficacy in reducing biomass as well as metabolic activity.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"234 ","pages":"Pages 29-39"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908425000586","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biofilm formation is considered one of the most important virulence factors for Candida species, which presents an extracellular matrix of polymeric substances that limits the passage of antifungals, leading to fungal resistance. Therefore, the present study investigated the biofilm eradication effect of synthetic chalcones against Candida albicans and Candida tropicalis. Molecular docking studies were conducted to verify the mechanism of action of chalcones on Candida species proteins. The biofilm eradication effect was determined using crystal violet methodology to quantify biomass and Thiazolyl blue tetrazolium bromide (MTT) to verify the influence on metabolic activity. A molecular docking study was also carried out with Candida proteins using the Protein Data Bank repository (https://www.rcsb.org/) and Autodocktools™ software. The results showed that (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnona-1,3,6,8-tetraen-5-one (DB-CNM), and (1E,4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (DB-Anisal) were able to eradicate the biomass of C. albicans CA INCQS 40006 (ATCC 10231), while fluconazole only reduced the biomass at the three tested concentrations (IC50, IC50 × 10, and IC50 × 20) against C. tropicalis CT INCQS 40042 (ATCC 13803). Both chalcones and fluconazole successfully reduced metabolic activity across all tested strains. The molecular docking study concluded that DB-Acetone, DB-Anisal, and DB-CNM exhibited significant affinity energy values toward the binding sites of C. albicans and C. tropicalis. It is concluded that the synthetic chalcones showed promising results in inhibiting Candida spp. biofilm, demonstrating efficacy in reducing biomass as well as metabolic activity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimie
Biochimie 生物-生化与分子生物学
CiteScore
7.20
自引率
2.60%
发文量
219
审稿时长
40 days
期刊介绍: Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English. Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信