Lobar Sliding Reduces Parenchymal Distortion More in the Right Lung than the Left Lung.

IF 1.7 4区 医学 Q4 BIOPHYSICS
Adam E Galloy, Joseph M Reinhardt, Madhavan L Raghavan
{"title":"Lobar Sliding Reduces Parenchymal Distortion More in the Right Lung than the Left Lung.","authors":"Adam E Galloy, Joseph M Reinhardt, Madhavan L Raghavan","doi":"10.1115/1.4068237","DOIUrl":null,"url":null,"abstract":"<p><p>Interlobar sliding has long been suspected to help the lungs adapt to changes in thoracic cavity shape by reducing parenchymal distortion. Our previous controlled computational experiment tested the hypothesis that lung lobar sliding reduces parenchymal distortion during breathing, but only the left lung was studied. The goal of this study was to extend this analysis to the right lung which has three lobes and two fissures compared to the left lung?s two lobes and single fissure. Finite elastic contact mechanics models of the right lung were used to perform paired subject-specific simulations of lung deformation with and without lobar sliding from end inhale to end exhale at both tidal breathing volumes (n = 8) and breath hold volumes near total lung capacity and functional residual capacity (n = 6). Consistent with the hypothesis, we found that parenchymal distortion, quantified with the spatial mean of the anisotropic deformation index throughout each lung model, was lesser in the models with lobar sliding than their non-sliding counterparts (p = 0.008, 13% median difference for tidal breathing and p = 0.03, 19.6% median difference for breath holds). This effect was several times larger than was previously observed in the left lung (p = 0.008, 5.3% median difference for tidal breathing and p = 0.03, 3.2% median difference for breath holds), likely due to the greater number of sliding interfaces in the right lung than the left which better allow the right lung to adapt to the thoracic cavity.</p>","PeriodicalId":54871,"journal":{"name":"Journal of Biomechanical Engineering-Transactions of the Asme","volume":" ","pages":"1-15"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomechanical Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4068237","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Interlobar sliding has long been suspected to help the lungs adapt to changes in thoracic cavity shape by reducing parenchymal distortion. Our previous controlled computational experiment tested the hypothesis that lung lobar sliding reduces parenchymal distortion during breathing, but only the left lung was studied. The goal of this study was to extend this analysis to the right lung which has three lobes and two fissures compared to the left lung?s two lobes and single fissure. Finite elastic contact mechanics models of the right lung were used to perform paired subject-specific simulations of lung deformation with and without lobar sliding from end inhale to end exhale at both tidal breathing volumes (n = 8) and breath hold volumes near total lung capacity and functional residual capacity (n = 6). Consistent with the hypothesis, we found that parenchymal distortion, quantified with the spatial mean of the anisotropic deformation index throughout each lung model, was lesser in the models with lobar sliding than their non-sliding counterparts (p = 0.008, 13% median difference for tidal breathing and p = 0.03, 19.6% median difference for breath holds). This effect was several times larger than was previously observed in the left lung (p = 0.008, 5.3% median difference for tidal breathing and p = 0.03, 3.2% median difference for breath holds), likely due to the greater number of sliding interfaces in the right lung than the left which better allow the right lung to adapt to the thoracic cavity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.90%
发文量
169
审稿时长
4-8 weeks
期刊介绍: Artificial Organs and Prostheses; Bioinstrumentation and Measurements; Bioheat Transfer; Biomaterials; Biomechanics; Bioprocess Engineering; Cellular Mechanics; Design and Control of Biological Systems; Physiological Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信