{"title":"Immune Cell-NSPC interactions: Friend or foe in CNS injury and repair?","authors":"Chih-Wei Zeng","doi":"10.1016/j.diff.2025.100855","DOIUrl":null,"url":null,"abstract":"<div><div>Neural stem/progenitor cells (NSPCs) play a crucial role in central nervous system (CNS) development, regeneration, and repair. However, their functionality and therapeutic potential are intricately modulated by interactions with immune cells, particularly macrophages and microglia. Microglia, as CNS-resident macrophages, are distinct from peripheral macrophages in their roles and characteristics, contributing to specialized functions within the CNS. Recent evidence suggests that microglia, as CNS-resident macrophages, contribute to the quality assurance of NSPCs by eliminating stressed or dysfunctional cells, yet the mechanisms underlying this process remain largely unexplored. Furthermore, macrophage polarization states, such as M1 and M2, appear to differentially influence NSPC quality, potentially impacting neurogenesis and regenerative outcomes. Identifying surface markers indicative of NSPC stress could provide a strategy for selecting optimal cells for transplantation therapies. Additionally, <em>in vivo</em> clonal labeling approaches may enable precise tracking of NSPC fate and their interactions with immune cells. Beyond macrophages and microglia, the roles of other immune cells, including T cells and neutrophils, particularly in injury and neurodegenerative disease contexts, in the context of CNS injury and disease are emerging areas of interest. Here, I discuss the emerging evidence supporting the interplay between the immune system and NSPCs, highlighting critical gaps in knowledge and proposing future research directions to harness immune-mediated mechanisms for optimizing neural regeneration and transplantation strategies.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"143 ","pages":"Article 100855"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468125000222","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural stem/progenitor cells (NSPCs) play a crucial role in central nervous system (CNS) development, regeneration, and repair. However, their functionality and therapeutic potential are intricately modulated by interactions with immune cells, particularly macrophages and microglia. Microglia, as CNS-resident macrophages, are distinct from peripheral macrophages in their roles and characteristics, contributing to specialized functions within the CNS. Recent evidence suggests that microglia, as CNS-resident macrophages, contribute to the quality assurance of NSPCs by eliminating stressed or dysfunctional cells, yet the mechanisms underlying this process remain largely unexplored. Furthermore, macrophage polarization states, such as M1 and M2, appear to differentially influence NSPC quality, potentially impacting neurogenesis and regenerative outcomes. Identifying surface markers indicative of NSPC stress could provide a strategy for selecting optimal cells for transplantation therapies. Additionally, in vivo clonal labeling approaches may enable precise tracking of NSPC fate and their interactions with immune cells. Beyond macrophages and microglia, the roles of other immune cells, including T cells and neutrophils, particularly in injury and neurodegenerative disease contexts, in the context of CNS injury and disease are emerging areas of interest. Here, I discuss the emerging evidence supporting the interplay between the immune system and NSPCs, highlighting critical gaps in knowledge and proposing future research directions to harness immune-mediated mechanisms for optimizing neural regeneration and transplantation strategies.
期刊介绍:
Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal.
The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest.
The principal subject areas the journal covers are: • embryonic patterning and organogenesis
• human development and congenital malformation
• mechanisms of cell lineage commitment
• tissue homeostasis and oncogenic transformation
• establishment of cellular polarity
• stem cell differentiation
• cell reprogramming mechanisms
• stability of the differentiated state
• cell and tissue interactions in vivo and in vitro
• signal transduction pathways in development and differentiation
• carcinogenesis and cancer
• mechanisms involved in cell growth and division especially relating to cancer
• differentiation in regeneration and ageing
• therapeutic applications of differentiation processes.