Optimizing Colocalized Cell Counting Using Automated and Semiautomated Methods.

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hasita V Nalluri, Shantelle A Graff, Dragan Maric, John D Heiss
{"title":"Optimizing Colocalized Cell Counting Using Automated and Semiautomated Methods.","authors":"Hasita V Nalluri, Shantelle A Graff, Dragan Maric, John D Heiss","doi":"10.1007/s12021-025-09723-8","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation within the spinal subarachnoid space leads to arachnoid hypercellularity. Multiplex immunohistochemistry (MP-IHC) enables the quantification of immune cells to assess arachnoid inflammation, but manual counting is time-consuming, impractical for large datasets, and prone to operator bias. Although automated colocalization methods exist, many clinicians prefer manual counting due to challenges with diverse cell morphologies and imperfect colocalization. Object-based colocalization analysis (OBCA) tools address these issues, improving accuracy and efficiency. We evaluated semi-automated and automated OBCA techniques for quantifying colocalized immune cells in human arachnoid tissue sections. Both methods demonstrated sufficient reliability across morphologies (P < 0.0001). While automated counts differed significantly from manual counts, their strong correlation (R<sup>2</sup> = 0.7764-0.9954) supports their reliability for applications where exact counts are less critical. Additionally, both techniques significantly reduced analysis time compared to manual counting. Our findings support the use of automated and semi-automated colocalization analysis methods in histological samples, particularly as sample size increases.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 2","pages":"25"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926031/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-025-09723-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammation within the spinal subarachnoid space leads to arachnoid hypercellularity. Multiplex immunohistochemistry (MP-IHC) enables the quantification of immune cells to assess arachnoid inflammation, but manual counting is time-consuming, impractical for large datasets, and prone to operator bias. Although automated colocalization methods exist, many clinicians prefer manual counting due to challenges with diverse cell morphologies and imperfect colocalization. Object-based colocalization analysis (OBCA) tools address these issues, improving accuracy and efficiency. We evaluated semi-automated and automated OBCA techniques for quantifying colocalized immune cells in human arachnoid tissue sections. Both methods demonstrated sufficient reliability across morphologies (P < 0.0001). While automated counts differed significantly from manual counts, their strong correlation (R2 = 0.7764-0.9954) supports their reliability for applications where exact counts are less critical. Additionally, both techniques significantly reduced analysis time compared to manual counting. Our findings support the use of automated and semi-automated colocalization analysis methods in histological samples, particularly as sample size increases.

使用自动化和半自动方法优化共定位细胞计数。
脊髓蛛网膜下腔内的炎症导致蛛网膜细胞增多。多重免疫组织化学(MP-IHC)可以量化免疫细胞来评估蛛网膜炎症,但人工计数耗时,对于大数据集不切实际,并且容易产生操作员偏差。尽管存在自动共定位方法,但由于细胞形态多样化和不完善的共定位,许多临床医生更喜欢人工计数。基于对象的共定位分析(OBCA)工具解决了这些问题,提高了准确性和效率。我们评估了半自动化和自动化OBCA技术用于定量人蛛网膜组织切片中的共定位免疫细胞。两种方法都证明了足够的跨形态可靠性(P 2 = 0.7764-0.9954),支持它们在精确计数不那么关键的应用程序中的可靠性。此外,与手工计数相比,这两种技术都显著减少了分析时间。我们的研究结果支持在组织学样本中使用自动化和半自动共定位分析方法,特别是当样本量增加时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信