{"title":"[Spatio-temporal Evolution and Driving Force Analysis of Carbon Storage in Anhui Province Coupled with PLUS-InVEST-GeoDectetor Model].","authors":"Ji-Ang Jia, Wei-Ling Guo, Liu-Yang Xu, Chang Gao","doi":"10.13227/j.hjkx.202403132","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the impact of land use change on carbon storage and the driving factors of spatial differentiation of carbon storage in Anhui Province under the strategic goal of \"dual carbon\" and to predict the land use pattern of Anhui Province in 2035 under different scenarios is theoretically and practically important. The coupling PLUS-InVEST model was used to analyze the spatial and temporal variation characteristics of land use pattern and carbon storage in Anhui Province under the scenarios of natural development, ecological protection, cultivated land protection, and ecological cultivated land protection in 2035, and the driving force of spatial differentiation of carbon storage was analyzed by using geographic detectors. The results showed that: ① From 1990 to 2020, the land use pattern of Anhui Province showed a trend of continuous decrease in cultivated land and forest land area and significant expansion of urban area. ② From 1990 to 2020, the carbon storage in Anhui Province decreased by 1.39×10<sup>7</sup> t, showing a continuous decreasing trend, and the conversion of cultivated land to urban was the major reason for the decrease in carbon storage, accounting for 65.96% of the total carbon storage loss. ③ The explanatory power of elevation on carbon storage was the strongest under single factor detection (<i>q</i> value of 0.185), and the explanatory power of natural environmental factors on carbon storage spatial differentiation was dominant. ④ In 2035, the carbon storage under different scenarios will be decreasing, and the reduction of inhibited carbon storage under the cultivated land ecological dual protection scenario will be the most significant.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 3","pages":"1703-1715"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202403132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
To explore the impact of land use change on carbon storage and the driving factors of spatial differentiation of carbon storage in Anhui Province under the strategic goal of "dual carbon" and to predict the land use pattern of Anhui Province in 2035 under different scenarios is theoretically and practically important. The coupling PLUS-InVEST model was used to analyze the spatial and temporal variation characteristics of land use pattern and carbon storage in Anhui Province under the scenarios of natural development, ecological protection, cultivated land protection, and ecological cultivated land protection in 2035, and the driving force of spatial differentiation of carbon storage was analyzed by using geographic detectors. The results showed that: ① From 1990 to 2020, the land use pattern of Anhui Province showed a trend of continuous decrease in cultivated land and forest land area and significant expansion of urban area. ② From 1990 to 2020, the carbon storage in Anhui Province decreased by 1.39×107 t, showing a continuous decreasing trend, and the conversion of cultivated land to urban was the major reason for the decrease in carbon storage, accounting for 65.96% of the total carbon storage loss. ③ The explanatory power of elevation on carbon storage was the strongest under single factor detection (q value of 0.185), and the explanatory power of natural environmental factors on carbon storage spatial differentiation was dominant. ④ In 2035, the carbon storage under different scenarios will be decreasing, and the reduction of inhibited carbon storage under the cultivated land ecological dual protection scenario will be the most significant.