[Effect of Low-density Polyethylene Microplastics on Soybean-soil-microbial System].

Q2 Environmental Science
Yu-Fei Jia, Jia-Wen Wang, Rui-Kun Wang, Tian-Qi Wang, Xue-Hui Xu
{"title":"[Effect of Low-density Polyethylene Microplastics on Soybean-soil-microbial System].","authors":"Yu-Fei Jia, Jia-Wen Wang, Rui-Kun Wang, Tian-Qi Wang, Xue-Hui Xu","doi":"10.13227/j.hjkx.202403213","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread use of plastics has led to the prevalence of microplastics in the soil environment, which, as an emerging pollutant, affects plant growth, soil physicochemical properties, and microbial community structure. The effects of different contents of low-density polyethylene microplastics (LDPE-MPs) on soybean growth, soil physicochemical properties, soil enzyme activities, and microbial activities were investigated through pot culture experiments to explore the toxic effects of microplastics on soybean-soil-microbial systems. The results showed that compared with that in the control, microplastics inhibited soybean emergence (14.1%-25.0%), whereas plant height, biomass, and pod weight were inhibited by low concentration and promoted by high concentration, and SPAD of soybean was significantly reduced by high concentrations of microplastics stress. Microplastics affected the quality of soybeans, with s-sugars, s-proteins, and cellulose increased by 117.7%-258.8%, 3.7%-61.6%, and 47.8%-83.4%, respectively, compared with those in the control. Microplastic addition also affected soybean nutrient uptake, as evidenced by the promotion of N (95.1%-144.4%) and P (4.1%-20.4%) uptake in the above-ground portion of soybeans and N (11.4%-19.4%) and P (8.5%-42.6%) uptake in the below-ground portion of soybeans, and inhibited K (2.2%-15.3%) uptake in the aboveground portion of the plant and K (3.9%-9.4%) uptake in the below-ground portion of the plan, respectively. The addition of microplastics had little effect on soil pH; however, it significantly increased CEC (65.1%-74.7%) and SOM (22.6%). With the increase in the addition content, the content of NO<sub>3</sub><sup>-</sup>-N, AP, AK, and UE activities were significantly reduced; the content of NO<sub>3</sub><sup>-</sup>-N, AP, and AK was reduced by 57.7%, 22.0%, and 18.8% compared with that in the control at 3% addition, respectively; and UE activity was inhibited by 13.98%. Further, 16S rRNA sequencing analysis showed that microplastic stress increased the abundance of the Proteobacter group and reduced the abundance of the Acidobacter group in the soil, decreasing the diversity of the community, which in turn destabilized the microbial community and made the entire system less stable. In summary, microplastic stress affects the stability of soybean-soil-microbial systems.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 3","pages":"1831-1840"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202403213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of plastics has led to the prevalence of microplastics in the soil environment, which, as an emerging pollutant, affects plant growth, soil physicochemical properties, and microbial community structure. The effects of different contents of low-density polyethylene microplastics (LDPE-MPs) on soybean growth, soil physicochemical properties, soil enzyme activities, and microbial activities were investigated through pot culture experiments to explore the toxic effects of microplastics on soybean-soil-microbial systems. The results showed that compared with that in the control, microplastics inhibited soybean emergence (14.1%-25.0%), whereas plant height, biomass, and pod weight were inhibited by low concentration and promoted by high concentration, and SPAD of soybean was significantly reduced by high concentrations of microplastics stress. Microplastics affected the quality of soybeans, with s-sugars, s-proteins, and cellulose increased by 117.7%-258.8%, 3.7%-61.6%, and 47.8%-83.4%, respectively, compared with those in the control. Microplastic addition also affected soybean nutrient uptake, as evidenced by the promotion of N (95.1%-144.4%) and P (4.1%-20.4%) uptake in the above-ground portion of soybeans and N (11.4%-19.4%) and P (8.5%-42.6%) uptake in the below-ground portion of soybeans, and inhibited K (2.2%-15.3%) uptake in the aboveground portion of the plant and K (3.9%-9.4%) uptake in the below-ground portion of the plan, respectively. The addition of microplastics had little effect on soil pH; however, it significantly increased CEC (65.1%-74.7%) and SOM (22.6%). With the increase in the addition content, the content of NO3--N, AP, AK, and UE activities were significantly reduced; the content of NO3--N, AP, and AK was reduced by 57.7%, 22.0%, and 18.8% compared with that in the control at 3% addition, respectively; and UE activity was inhibited by 13.98%. Further, 16S rRNA sequencing analysis showed that microplastic stress increased the abundance of the Proteobacter group and reduced the abundance of the Acidobacter group in the soil, decreasing the diversity of the community, which in turn destabilized the microbial community and made the entire system less stable. In summary, microplastic stress affects the stability of soybean-soil-microbial systems.

[低密度聚乙烯微塑料对大豆-土壤-微生物系统的影响]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信