[Effects of Soil Acidification on the Distribution and Availability of Arsenic in Aggregates].

Q2 Environmental Science
Sheng-Bai Xiao, Yan Xu, Shu-Ting Tang, Hao Cui, Shi-Qiang Wei
{"title":"[Effects of Soil Acidification on the Distribution and Availability of Arsenic in Aggregates].","authors":"Sheng-Bai Xiao, Yan Xu, Shu-Ting Tang, Hao Cui, Shi-Qiang Wei","doi":"10.13227/j.hjkx.202402134","DOIUrl":null,"url":null,"abstract":"<p><p>The spatiotemporal substitution method was used to collect yellow soil and purple soil with different acidification degrees; analyze the effects of acidification on the composition and properties of soil aggregates; explore the distribution characteristics, occurrence forms, and availability of arsenic (As) in soil aggregates with different acidification degrees; and reveal the key factors restricting the availability of soil As. The results showed that the distribution of total As in each aggregate was positively affected by its mass fraction, and the larger the mass fraction, the more the total As distribution. Soil acidification destroyed the aggregate structure, reduced the mass fraction of large aggregate S1 (&gt;2 mm) by 5 to 15 percentage points, led to the increase in amorphous iron content by 2 to 7 times, and decreased the total As distribution of S1. The available As was positively regulated by non-obligate/obligate adsorptive arsenic (F1, F2) (F1+F2 correlation coefficient 0.76) and negatively affected by residual arsenic (F5) (correlation coefficient -0.89). Soil acidification significantly reduced the ratio of F1 to F2 after exogenous As entered the soil, resulting in a decrease in <i>ω</i> (available As) from 6.71-15.37 mg·kg<sup>-1</sup> to 2.36-9.26 mg·kg<sup>-1</sup>, and the highest exogenous available As content was found in S1 and microaggregate S4 (&lt;0.25 mm). Simultaneously, exogenous available As was also negatively affected by organic matter (correlation coefficient -0.72) and positively regulated by available phosphorus and CEC (coefficients 0.40 and 0.52, respectively). There were differences in soil property factors that restricted the availability of As in aggregates of different particle sizes. Soil acidification in S2 (1-2 mm), S3 (0.25-1 mm), and S4 aggregates significantly increased the amorphous iron and thus reduced the availability of As, and the exogenous available As in S3 was not significantly affected by CEC. However, the effective As from all agglomerated sources was affected by organic matter, nitrogen, and potassium. The results provide a basis for the accurate control of soil As availability and pollution remediation.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 3","pages":"1762-1773"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202402134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The spatiotemporal substitution method was used to collect yellow soil and purple soil with different acidification degrees; analyze the effects of acidification on the composition and properties of soil aggregates; explore the distribution characteristics, occurrence forms, and availability of arsenic (As) in soil aggregates with different acidification degrees; and reveal the key factors restricting the availability of soil As. The results showed that the distribution of total As in each aggregate was positively affected by its mass fraction, and the larger the mass fraction, the more the total As distribution. Soil acidification destroyed the aggregate structure, reduced the mass fraction of large aggregate S1 (>2 mm) by 5 to 15 percentage points, led to the increase in amorphous iron content by 2 to 7 times, and decreased the total As distribution of S1. The available As was positively regulated by non-obligate/obligate adsorptive arsenic (F1, F2) (F1+F2 correlation coefficient 0.76) and negatively affected by residual arsenic (F5) (correlation coefficient -0.89). Soil acidification significantly reduced the ratio of F1 to F2 after exogenous As entered the soil, resulting in a decrease in ω (available As) from 6.71-15.37 mg·kg-1 to 2.36-9.26 mg·kg-1, and the highest exogenous available As content was found in S1 and microaggregate S4 (<0.25 mm). Simultaneously, exogenous available As was also negatively affected by organic matter (correlation coefficient -0.72) and positively regulated by available phosphorus and CEC (coefficients 0.40 and 0.52, respectively). There were differences in soil property factors that restricted the availability of As in aggregates of different particle sizes. Soil acidification in S2 (1-2 mm), S3 (0.25-1 mm), and S4 aggregates significantly increased the amorphous iron and thus reduced the availability of As, and the exogenous available As in S3 was not significantly affected by CEC. However, the effective As from all agglomerated sources was affected by organic matter, nitrogen, and potassium. The results provide a basis for the accurate control of soil As availability and pollution remediation.

[土壤酸化对骨料中砷的分布和可用性的影响]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学
环境科学 Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信