Semi-parametric testing for ordinal treatment effects in time-to-event data via dynamic Dirichlet process mixtures of the inverse-Gaussian distribution.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Jonathan A Race, Amy S Ruppert, Yvonne Efebera, Michael L Pennell
{"title":"Semi-parametric testing for ordinal treatment effects in time-to-event data via dynamic Dirichlet process mixtures of the inverse-Gaussian distribution.","authors":"Jonathan A Race, Amy S Ruppert, Yvonne Efebera, Michael L Pennell","doi":"10.1177/09622802251322986","DOIUrl":null,"url":null,"abstract":"<p><p>Time-to-event data often violate the proportional hazards assumption under which the log-rank test is optimal. Such violations are especially common in the sphere of biological and medical data where heterogeneity due to unmeasured covariates or time varying effects are common. A variety of parametric survival models have been proposed in the literature which make more appropriate assumptions on the hazard function, at least for certain applications. One such model is derived from the first hitting time paradigm which assumes that a subject's event time is determined by a latent stochastic process reaching a threshold value. Several random effects specifications of the first hitting time model have also been proposed which allow for better modeling of data with unmeasured covariates. We propose a Bayesian model which loosens assumptions on the mixing distribution inherent in the random effects first hitting time models currently in use and we do so in a manner which is ideally suited for testing for effects of ordinal treatment variables. We demonstrate via a simulation study that the proposed model has better power than log-rank based methods in detecting ordinal treatment effects in the presence of nonproportional hazards. Additionally, we show that the proposed model is almost as powerful as log-rank based methods when the proportional hazards assumption holds. We also apply the proposed methodology to two biomedical data sets: a toxicity study in rodents and an observational study of cancer patients.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251322986"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251322986","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Time-to-event data often violate the proportional hazards assumption under which the log-rank test is optimal. Such violations are especially common in the sphere of biological and medical data where heterogeneity due to unmeasured covariates or time varying effects are common. A variety of parametric survival models have been proposed in the literature which make more appropriate assumptions on the hazard function, at least for certain applications. One such model is derived from the first hitting time paradigm which assumes that a subject's event time is determined by a latent stochastic process reaching a threshold value. Several random effects specifications of the first hitting time model have also been proposed which allow for better modeling of data with unmeasured covariates. We propose a Bayesian model which loosens assumptions on the mixing distribution inherent in the random effects first hitting time models currently in use and we do so in a manner which is ideally suited for testing for effects of ordinal treatment variables. We demonstrate via a simulation study that the proposed model has better power than log-rank based methods in detecting ordinal treatment effects in the presence of nonproportional hazards. Additionally, we show that the proposed model is almost as powerful as log-rank based methods when the proportional hazards assumption holds. We also apply the proposed methodology to two biomedical data sets: a toxicity study in rodents and an observational study of cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信