Covariate-adjusted inference for doubly adaptive biased coin design.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Fuyi Tu, Wei Ma
{"title":"Covariate-adjusted inference for doubly adaptive biased coin design.","authors":"Fuyi Tu, Wei Ma","doi":"10.1177/09622802251324750","DOIUrl":null,"url":null,"abstract":"<p><p>Randomized controlled trials (RCTs) are pivotal for evaluating the efficacy of medical treatments and interventions, serving as a cornerstone in clinical research. In addition to randomization, achieving balances among multiple targets, such as statistical validity, efficiency, and ethical considerations, is also a central issue in RCTs. The doubly-adaptive biased coin design (DBCD) is notable for its high flexibility and efficiency in achieving any predetermined optimal allocation ratio and reducing variance for a given target allocation. However, DBCD does not account for abundant covariates that may be correlated with responses, which could further enhance trial efficiency. To address this limitation, this article explores the use of covariates in the analysis stage and evaluates the benefits of nonlinear covariate adjustment for estimating treatment effects. We propose a general framework to capture the intricate relationship between subjects' covariates and responses, supported by rigorous theoretical derivation and empirical validation via simulation study. Additionally, we introduce the use of sample splitting techniques for machine learning methods under DBCD, demonstrating the effectiveness of the corresponding estimators in high-dimensional cases. This paper aims to advance both the theoretical research and practical application of DBCD, thereby achieving more accurate and ethical clinical trials.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251324750"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251324750","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Randomized controlled trials (RCTs) are pivotal for evaluating the efficacy of medical treatments and interventions, serving as a cornerstone in clinical research. In addition to randomization, achieving balances among multiple targets, such as statistical validity, efficiency, and ethical considerations, is also a central issue in RCTs. The doubly-adaptive biased coin design (DBCD) is notable for its high flexibility and efficiency in achieving any predetermined optimal allocation ratio and reducing variance for a given target allocation. However, DBCD does not account for abundant covariates that may be correlated with responses, which could further enhance trial efficiency. To address this limitation, this article explores the use of covariates in the analysis stage and evaluates the benefits of nonlinear covariate adjustment for estimating treatment effects. We propose a general framework to capture the intricate relationship between subjects' covariates and responses, supported by rigorous theoretical derivation and empirical validation via simulation study. Additionally, we introduce the use of sample splitting techniques for machine learning methods under DBCD, demonstrating the effectiveness of the corresponding estimators in high-dimensional cases. This paper aims to advance both the theoretical research and practical application of DBCD, thereby achieving more accurate and ethical clinical trials.

双自适应偏置硬币设计的协变量调整推理。
随机对照试验(RCTs)是评估医学治疗和干预措施疗效的关键,是临床研究的基石。除了随机化,实现多个目标之间的平衡,如统计有效性、效率和伦理考虑,也是随机对照试验的核心问题。双自适应偏置硬币设计(DBCD)具有很高的灵活性和效率,可以实现任何预定的最佳分配比例,并减少给定目标分配的方差。然而,DBCD没有考虑到可能与响应相关的大量协变量,这可以进一步提高试验效率。为了解决这一限制,本文探讨了协变量在分析阶段的使用,并评估了非线性协变量调整对估计治疗效果的好处。我们提出了一个总体框架来捕捉被试协变量和反应之间的复杂关系,并通过严格的理论推导和模拟研究的实证验证来支持。此外,我们介绍了在DBCD下使用样本分割技术进行机器学习方法,证明了相应估计器在高维情况下的有效性。本文旨在推动DBCD的理论研究和实际应用,从而实现更准确、更符合伦理的临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信