A connection between covariate adjustment and stratified randomization in randomized clinical trials.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Zhiwei Zhang
{"title":"A connection between covariate adjustment and stratified randomization in randomized clinical trials.","authors":"Zhiwei Zhang","doi":"10.1177/09622802251324764","DOIUrl":null,"url":null,"abstract":"<p><p>The statistical efficiency of randomized clinical trials can be improved by incorporating information from baseline covariates (i.e. pre-treatment patient characteristics). This can be done in the design stage using stratified (permutated block) randomization or in the analysis stage through covariate adjustment. This article makes a connection between covariate adjustment and stratified randomization in a general framework where all regular, asymptotically linear estimators are identified as augmented estimators. From a geometric perspective, covariate adjustment can be viewed as an attempt to approximate the optimal augmentation function, and stratified randomization improves a given approximation by moving it closer to the optimal augmentation function. The efficiency benefit of stratified randomization is asymptotically equivalent to attaching an optimal augmentation term based on the stratification factor. In designing a trial with stratified randomization, it is not essential to include all important covariates in the stratification, because their prognostic information can be incorporated through covariate adjustment. Under stratified randomization, adjusting for the stratification factor only in data analysis is not expected to improve efficiency, and the key to efficient estimation is incorporating prognostic information from all important covariates. These observations are confirmed in a simulation study and illustrated using real clinical trial data.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251324764"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251324764","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

The statistical efficiency of randomized clinical trials can be improved by incorporating information from baseline covariates (i.e. pre-treatment patient characteristics). This can be done in the design stage using stratified (permutated block) randomization or in the analysis stage through covariate adjustment. This article makes a connection between covariate adjustment and stratified randomization in a general framework where all regular, asymptotically linear estimators are identified as augmented estimators. From a geometric perspective, covariate adjustment can be viewed as an attempt to approximate the optimal augmentation function, and stratified randomization improves a given approximation by moving it closer to the optimal augmentation function. The efficiency benefit of stratified randomization is asymptotically equivalent to attaching an optimal augmentation term based on the stratification factor. In designing a trial with stratified randomization, it is not essential to include all important covariates in the stratification, because their prognostic information can be incorporated through covariate adjustment. Under stratified randomization, adjusting for the stratification factor only in data analysis is not expected to improve efficiency, and the key to efficient estimation is incorporating prognostic information from all important covariates. These observations are confirmed in a simulation study and illustrated using real clinical trial data.

随机临床试验中协变量调整与分层随机化之间的联系。
通过纳入基线协变量(即治疗前患者特征)的信息,可以提高随机临床试验的统计效率。这可以在设计阶段使用分层(排列块)随机化或在分析阶段通过协变量调整来完成。本文在一般框架中建立了协变量调整和分层随机化之间的联系,其中所有正则渐近线性估计量都被识别为增广估计量。从几何角度来看,协变量调整可以看作是近似最优增强函数的尝试,分层随机化通过使其更接近最优增强函数来改进给定的近似值。分层随机化的效率效益渐近等价于在分层因子的基础上附加一个最优增项。在设计分层随机化试验时,没有必要在分层中包括所有重要的协变量,因为它们的预后信息可以通过协变量调整纳入。在分层随机化下,仅在数据分析中调整分层因素并不能提高效率,有效估计的关键是纳入所有重要协变量的预后信息。这些观察结果在模拟研究中得到证实,并使用真实的临床试验数据进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信