Disruption of CYP88B1 by transcription activator-like effector nuclease in potato and potential use to produce useful saponins.

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shuhei Yasumoto, Hyoung Jae Lee, Ryota Akiyama, Satoru Sawai, Masaharu Mizutani, Naoyuki Umemoto, Kazuki Saito, Toshiya Muranaka
{"title":"Disruption of <i>CYP88B1</i> by transcription activator-like effector nuclease in potato and potential use to produce useful saponins.","authors":"Shuhei Yasumoto, Hyoung Jae Lee, Ryota Akiyama, Satoru Sawai, Masaharu Mizutani, Naoyuki Umemoto, Kazuki Saito, Toshiya Muranaka","doi":"10.5511/plantbiotechnology.24.0614a","DOIUrl":null,"url":null,"abstract":"<p><p>Potatoes produce steroidal glycoalkaloids (SGAs), toxic secondary metabolites associated with food poisoning. SGAs are synthesized by multiple biosynthetic enzymes. Knockdown of the <i>CYP88B1</i> gene, also known as <i>PGA3</i> or <i>GAME4</i>, is predicted to reduce toxic SGAs and accumulate steroidal saponins. These saponins not only serve as a source of steroidal drugs but are also anticipated to confer disease resistance to potatoes. In this study, we employed transcription activator-like effector nucleases (TALENs) for genome editing to disrupt <i>CYP88B1</i>. We introduced the TALEN expression vector via <i>Agrobacterium</i>-mediated transformation into seven potato lines. In six of these lines, disruption of the <i>CYP88B1</i> gene was confirmed. Liquid chromatography-mass spectrometry analysis revealed that SGAs were reduced to undetectable levels, corroborating the accumulation of steroidal saponins observed in previous knockdown studies. Our findings demonstrate the feasibility of generating low-toxicity potato lines through <i>CYP88B1</i> gene disruption using genome editing techniques.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 3","pages":"289-293"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0614a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Potatoes produce steroidal glycoalkaloids (SGAs), toxic secondary metabolites associated with food poisoning. SGAs are synthesized by multiple biosynthetic enzymes. Knockdown of the CYP88B1 gene, also known as PGA3 or GAME4, is predicted to reduce toxic SGAs and accumulate steroidal saponins. These saponins not only serve as a source of steroidal drugs but are also anticipated to confer disease resistance to potatoes. In this study, we employed transcription activator-like effector nucleases (TALENs) for genome editing to disrupt CYP88B1. We introduced the TALEN expression vector via Agrobacterium-mediated transformation into seven potato lines. In six of these lines, disruption of the CYP88B1 gene was confirmed. Liquid chromatography-mass spectrometry analysis revealed that SGAs were reduced to undetectable levels, corroborating the accumulation of steroidal saponins observed in previous knockdown studies. Our findings demonstrate the feasibility of generating low-toxicity potato lines through CYP88B1 gene disruption using genome editing techniques.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信