Vahid Rajabali Zadeh , Jocelyne M. Lew , M. Atif Zahoor , Deanna Santer , Jordan J. Feld , Darryl Falzarano
{"title":"Combination therapy enhances the antiviral activity of IFN-λ against SARS-CoV-2 and MERS-CoV","authors":"Vahid Rajabali Zadeh , Jocelyne M. Lew , M. Atif Zahoor , Deanna Santer , Jordan J. Feld , Darryl Falzarano","doi":"10.1016/j.virusres.2025.199560","DOIUrl":null,"url":null,"abstract":"<div><div>Therapeutic options against pathogenic human coronaviruses remain limited. In a recent clinical trial, we demonstrated the therapeutic efficacy of pegylated-IFN-λ in COVID-19 outpatients. However, the emergence of variants that have the potential to evade IFN-mediated antiviral responses raises concerns regarding the continued efficacy of this approach. In this work, we compared the sensitivity of SARS-CoV-2 variants and MERS-CoV to IFN-λ treatment <em>in vitro</em> and explored the potential of combination therapy with other FDA-authorized or approved antiviral agents. We observed that in contrast to the ancestral strain, all other SARS-CoV-2 lineages showed varying, but increased resistance to IFN-λ treatment, from a 5.7-fold increase in EC<sub>50</sub> value for the P.1 strain to a 32.7-fold increase for the B.1.1.7 variant. We further show that combination treatment with remdesivir or nirmatrelvir enhanced the antiviral effect of IFN-λ against both SARS-CoV-2 and MERS-CoV. These findings justify the initiation of further <em>in vivo</em> testing that ultimately can help inform the development of more effective therapeutic guidelines against pathogenic coronaviruses.</div></div>","PeriodicalId":23483,"journal":{"name":"Virus research","volume":"355 ","pages":"Article 199560"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168170225000371","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Therapeutic options against pathogenic human coronaviruses remain limited. In a recent clinical trial, we demonstrated the therapeutic efficacy of pegylated-IFN-λ in COVID-19 outpatients. However, the emergence of variants that have the potential to evade IFN-mediated antiviral responses raises concerns regarding the continued efficacy of this approach. In this work, we compared the sensitivity of SARS-CoV-2 variants and MERS-CoV to IFN-λ treatment in vitro and explored the potential of combination therapy with other FDA-authorized or approved antiviral agents. We observed that in contrast to the ancestral strain, all other SARS-CoV-2 lineages showed varying, but increased resistance to IFN-λ treatment, from a 5.7-fold increase in EC50 value for the P.1 strain to a 32.7-fold increase for the B.1.1.7 variant. We further show that combination treatment with remdesivir or nirmatrelvir enhanced the antiviral effect of IFN-λ against both SARS-CoV-2 and MERS-CoV. These findings justify the initiation of further in vivo testing that ultimately can help inform the development of more effective therapeutic guidelines against pathogenic coronaviruses.
期刊介绍:
Virus Research provides a means of fast publication for original papers on fundamental research in virology. Contributions on new developments concerning virus structure, replication, pathogenesis and evolution are encouraged. These include reports describing virus morphology, the function and antigenic analysis of virus structural components, virus genome structure and expression, analysis on virus replication processes, virus evolution in connection with antiviral interventions, effects of viruses on their host cells, particularly on the immune system, and the pathogenesis of virus infections, including oncogene activation and transduction.