SEEDSTICK Affects Seed Development by Mediating Cytokinin Levels in Cotton.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Xiaohong Zhang, Yifan Li, Yunjie Ge, Yuhao Mao, Genhai Hu, Qifeng Ma, Eryong Chen
{"title":"SEEDSTICK Affects Seed Development by Mediating Cytokinin Levels in Cotton.","authors":"Xiaohong Zhang, Yifan Li, Yunjie Ge, Yuhao Mao, Genhai Hu, Qifeng Ma, Eryong Chen","doi":"10.1111/ppl.70161","DOIUrl":null,"url":null,"abstract":"<p><p>The SEEDSTICK transcription factor is important for flower and seed development, but the underlying molecular mechanisms remain unclear in cotton. In this study, we identified and cloned two STK homolog genes in upland cotton, an economically valuable cultivated crop. Phylogenetic and sequence analyses showed that the C-terminus of both GhSTKs had a conserved -DJJILHLG amino acid sequence and that GhSTK1 and GhSTK2 were very similar to GaAGL11 and GrAGL11, respectively. Quantitative real-time PCR analysis revealed that both GhSTKs were highly expressed in the ovules, and GUS activity was detected in the style and stigma. Subcellular localization experiments showed that GhSTK1 and GhSTK2 were localized to the nucleus. In Arabidopsis, the overexpression of GhSTK1 or GhSTK2 affected floral organ development and seed formation by increasing the transcript levels of the CKX genes and other genes related to floral development. Silencing both GhSTK1 and GhSTK2 increased the expression of GhFT and GhSHP and led to the earlier appearance of cotton buds. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that the two GhSTK proteins could interact with the GhSEP3 and GhSEP4 proteins. The present results suggest that GhSTK1 and GhSTK2, which have different sequences and expression patterns, might be functionally redundant and influence the regulation of cotton bud and seed development.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70161"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70161","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The SEEDSTICK transcription factor is important for flower and seed development, but the underlying molecular mechanisms remain unclear in cotton. In this study, we identified and cloned two STK homolog genes in upland cotton, an economically valuable cultivated crop. Phylogenetic and sequence analyses showed that the C-terminus of both GhSTKs had a conserved -DJJILHLG amino acid sequence and that GhSTK1 and GhSTK2 were very similar to GaAGL11 and GrAGL11, respectively. Quantitative real-time PCR analysis revealed that both GhSTKs were highly expressed in the ovules, and GUS activity was detected in the style and stigma. Subcellular localization experiments showed that GhSTK1 and GhSTK2 were localized to the nucleus. In Arabidopsis, the overexpression of GhSTK1 or GhSTK2 affected floral organ development and seed formation by increasing the transcript levels of the CKX genes and other genes related to floral development. Silencing both GhSTK1 and GhSTK2 increased the expression of GhFT and GhSHP and led to the earlier appearance of cotton buds. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that the two GhSTK proteins could interact with the GhSEP3 and GhSEP4 proteins. The present results suggest that GhSTK1 and GhSTK2, which have different sequences and expression patterns, might be functionally redundant and influence the regulation of cotton bud and seed development.

SEEDSTICK 通过调节棉花中的细胞分裂素水平影响种子发育。
SEEDSTICK转录因子在棉花花和种子发育中起重要作用,但其潜在的分子机制尚不清楚。在本研究中,我们鉴定并克隆了两个具有经济价值的陆地棉花STK同源基因。系统发育和序列分析表明,两种GhSTKs的c端均具有保守的-DJJILHLG氨基酸序列,GhSTK1和GhSTK2分别与GaAGL11和GrAGL11非常相似。实时荧光定量PCR结果显示,这两种GhSTKs在胚珠中均有高表达,花柱和柱头中均检测到GUS活性。亚细胞定位实验表明,GhSTK1和GhSTK2定位于细胞核。在拟南芥中,GhSTK1或GhSTK2的过表达通过增加CKX基因和其他花发育相关基因的转录水平影响花器官发育和种子形成。抑制GhSTK1和GhSTK2增加了GhFT和GhSHP的表达,导致棉芽提早出现。酵母双杂交和双分子荧光互补实验表明,这两个GhSTK蛋白可以与GhSEP3和GhSEP4蛋白相互作用。这些结果表明,GhSTK1和GhSTK2可能具有不同的序列和表达模式,并可能在功能上冗余,影响棉花芽和种子发育的调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信