Fides Regina Schwartz, Steve Bache, Rachel Lee, Charles M Maxfield, Michael F Fadell, Ana M Gaca, Ehsan Samei, Donald P Frush, Joseph Y Cao
{"title":"Photon-counting CT yields superior abdominopelvic image quality at lower radiation and iodinated contrast doses.","authors":"Fides Regina Schwartz, Steve Bache, Rachel Lee, Charles M Maxfield, Michael F Fadell, Ana M Gaca, Ehsan Samei, Donald P Frush, Joseph Y Cao","doi":"10.1007/s00247-025-06209-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Photon-counting detector (PCD) computed tomography (CT) has been shown to provide better image quality at lower radiation and intravenous contrast doses than energy-integrating detector (EID) CT in adult patients. There is limited data on these benefits for the pediatric population especially for abdominopelvic CT examinations.</p><p><strong>Objective: </strong>This study examines a reduced weight-based iodinated contrast dosing strategy in pediatric abdominopelvic CT on a PCD-CT system compared to standard dosing protocols on EID-CT using 1 mL/kg and 2 mL/kg, respectively. Image quality is assessed using both quantitative and qualitative measures. We also compare the radiation dose profile between the two PCD-CT and EID-CT cohorts.</p><p><strong>Materials and methods: </strong>This HIPAA-compliant, IRB-approved, retrospective study included pediatric patients (≤18 years of age) who underwent contrast-enhanced CT examinations of the abdomen and pelvis for routine clinical care (01/2022 - 01/2023) in the portal-venous phase on a PCD-CT (NAEOTOM Alpha; Siemens Healthineers). Inclusion criteria included a similar prior examination within 12-months on a dual-source EID-CT scanner from the same vendor. All PCD-CT and EID-CT scans were acquired using weight-based dosing for intravenous contrast media, 1 mL/kg and 2 mL/kg, respectively, based on institutional protocols. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured in the aorta, portal vein, liver parenchyma, and skeletal muscle. Three pediatric radiologists qualitatively evaluated each scan for overall image quality, noise, and contrast on a scale of 0-100. Confidence in small structure detection (common bile duct) was also rated on a scale of 0-3. Radiation doses (size-specific dose estimate (SSDE)) were calculated. Statistical analysis included paired t-tests and a mixed linear effects model to account for patient age, sex, and X-ray tube voltage. A P<0.05 indicated statistical significance.</p><p><strong>Results: </strong>A total of 49 patients were included (24 female; mean [SD] age 9.9 [6.3] years, range 0.6-18 years). Compared to EID-CT, PCD-CT had a higher mean SNR in the portal vein (23.4 [SD=9.3] vs 17.2 [SD=7.4], P<0.001), aorta (23.4 [SD=11.6] vs 17.7 [10.1], P=0.017), hepatic parenchyma (15.2 [SD=5.6] vs 13.2 [5.1], P=0.016), and skeletal muscle (5.7 [SD=3.1] vs 4.5 [SD=3.1], P=0.01). Compared to EID-CT, PCD-CT also had a higher mean CNR in the portal vein (27.5 [SD=9.6] vs 22.1 [SD=21.1], P=0.003), aorta (27.3 [SD=9.6] vs 22.3 [SD=11.8], P=0.004), hepatic parenchyma (20 [SD=6.9] vs 16.9 [SD=8.5], P=0.013), and skeletal muscle (14.6 [4.9] vs 12.1 [5.6], P=0.008). Overall image quality, image noise, and small structure detection confidence scores were higher on PCD-CT than EID-CT (P=0.037, P<0.001, and P=0.006, respectively). Mean SSDE for PCD-CT was lower than EID-CT (9.1 mGy [SD=4.3] vs 11 mGy [5.9], P=0.012).</p><p><strong>Conclusion: </strong>Compared with EID-CT, contrast-enhanced pediatric abdominopelvic CT offers improved subjective and objective image quality, even at lower radiation doses and reduced intravenous contrast medium volumes.</p>","PeriodicalId":19755,"journal":{"name":"Pediatric Radiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00247-025-06209-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Photon-counting detector (PCD) computed tomography (CT) has been shown to provide better image quality at lower radiation and intravenous contrast doses than energy-integrating detector (EID) CT in adult patients. There is limited data on these benefits for the pediatric population especially for abdominopelvic CT examinations.
Objective: This study examines a reduced weight-based iodinated contrast dosing strategy in pediatric abdominopelvic CT on a PCD-CT system compared to standard dosing protocols on EID-CT using 1 mL/kg and 2 mL/kg, respectively. Image quality is assessed using both quantitative and qualitative measures. We also compare the radiation dose profile between the two PCD-CT and EID-CT cohorts.
Materials and methods: This HIPAA-compliant, IRB-approved, retrospective study included pediatric patients (≤18 years of age) who underwent contrast-enhanced CT examinations of the abdomen and pelvis for routine clinical care (01/2022 - 01/2023) in the portal-venous phase on a PCD-CT (NAEOTOM Alpha; Siemens Healthineers). Inclusion criteria included a similar prior examination within 12-months on a dual-source EID-CT scanner from the same vendor. All PCD-CT and EID-CT scans were acquired using weight-based dosing for intravenous contrast media, 1 mL/kg and 2 mL/kg, respectively, based on institutional protocols. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured in the aorta, portal vein, liver parenchyma, and skeletal muscle. Three pediatric radiologists qualitatively evaluated each scan for overall image quality, noise, and contrast on a scale of 0-100. Confidence in small structure detection (common bile duct) was also rated on a scale of 0-3. Radiation doses (size-specific dose estimate (SSDE)) were calculated. Statistical analysis included paired t-tests and a mixed linear effects model to account for patient age, sex, and X-ray tube voltage. A P<0.05 indicated statistical significance.
Results: A total of 49 patients were included (24 female; mean [SD] age 9.9 [6.3] years, range 0.6-18 years). Compared to EID-CT, PCD-CT had a higher mean SNR in the portal vein (23.4 [SD=9.3] vs 17.2 [SD=7.4], P<0.001), aorta (23.4 [SD=11.6] vs 17.7 [10.1], P=0.017), hepatic parenchyma (15.2 [SD=5.6] vs 13.2 [5.1], P=0.016), and skeletal muscle (5.7 [SD=3.1] vs 4.5 [SD=3.1], P=0.01). Compared to EID-CT, PCD-CT also had a higher mean CNR in the portal vein (27.5 [SD=9.6] vs 22.1 [SD=21.1], P=0.003), aorta (27.3 [SD=9.6] vs 22.3 [SD=11.8], P=0.004), hepatic parenchyma (20 [SD=6.9] vs 16.9 [SD=8.5], P=0.013), and skeletal muscle (14.6 [4.9] vs 12.1 [5.6], P=0.008). Overall image quality, image noise, and small structure detection confidence scores were higher on PCD-CT than EID-CT (P=0.037, P<0.001, and P=0.006, respectively). Mean SSDE for PCD-CT was lower than EID-CT (9.1 mGy [SD=4.3] vs 11 mGy [5.9], P=0.012).
Conclusion: Compared with EID-CT, contrast-enhanced pediatric abdominopelvic CT offers improved subjective and objective image quality, even at lower radiation doses and reduced intravenous contrast medium volumes.
期刊介绍:
Official Journal of the European Society of Pediatric Radiology, the Society for Pediatric Radiology and the Asian and Oceanic Society for Pediatric Radiology
Pediatric Radiology informs its readers of new findings and progress in all areas of pediatric imaging and in related fields. This is achieved by a blend of original papers, complemented by reviews that set out the present state of knowledge in a particular area of the specialty or summarize specific topics in which discussion has led to clear conclusions. Advances in technology, methodology, apparatus and auxiliary equipment are presented, and modifications of standard techniques are described.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.