{"title":"A perspective on plasmonic metasurfaces: unlocking new horizons for sensing applications.","authors":"Muhammad Ali Butt","doi":"10.1088/1361-6528/adc30f","DOIUrl":null,"url":null,"abstract":"<p><p>Metasurfaces (MSs), two-dimensional arrays of engineered nanostructures, have revolutionized optics by enabling precise manipulation of electromagnetic waves at subwavelength scales. These platforms offer unparalleled control over amplitude, phase, and polarization, unlocking advanced applications in imaging, communication, and sensing. Among them, plasmonic MSs stand out for their ability to exploit surface plasmon resonances (SPRs)-collective electron oscillations at metal-dielectric interfaces. This phenomenon enables extreme light confinement and field enhancement, leading to highly efficient light-matter interactions. The remarkable sensitivity of SPR to refractive index variations makes plasmonic MSs ideal for detecting minute biochemical and environmental changes with exceptional precision. Additionally, their tunable SPR characteristics enhance multifunctionality, enabling adaptive and real-time sensing. By leveraging these advantages, plasmonic MSs address critical challenges in modern sensing, driving breakthroughs in biomedical diagnostics, environmental monitoring, and chemical detection. This perspective explores recent advancements in plasmonic MSs, emphasizing flexible, multifunctional designs and the transformative role of artificial intelligence in optimizing performance and enabling real-time data analysis.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adc30f","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metasurfaces (MSs), two-dimensional arrays of engineered nanostructures, have revolutionized optics by enabling precise manipulation of electromagnetic waves at subwavelength scales. These platforms offer unparalleled control over amplitude, phase, and polarization, unlocking advanced applications in imaging, communication, and sensing. Among them, plasmonic MSs stand out for their ability to exploit surface plasmon resonances (SPRs)-collective electron oscillations at metal-dielectric interfaces. This phenomenon enables extreme light confinement and field enhancement, leading to highly efficient light-matter interactions. The remarkable sensitivity of SPR to refractive index variations makes plasmonic MSs ideal for detecting minute biochemical and environmental changes with exceptional precision. Additionally, their tunable SPR characteristics enhance multifunctionality, enabling adaptive and real-time sensing. By leveraging these advantages, plasmonic MSs address critical challenges in modern sensing, driving breakthroughs in biomedical diagnostics, environmental monitoring, and chemical detection. This perspective explores recent advancements in plasmonic MSs, emphasizing flexible, multifunctional designs and the transformative role of artificial intelligence in optimizing performance and enabling real-time data analysis.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.