{"title":"Role of multi‑omics in advancing the understanding and treatment of prostate cancer (Review).","authors":"Li Yan, Pengxiao Su, Xiaoke Sun","doi":"10.3892/mmr.2025.13495","DOIUrl":null,"url":null,"abstract":"<p><p>The application of multi‑omics methodologies, encompassing genomics, transcriptomics, proteomics, metabolomics and integrative genomics, has markedly enhanced the understanding of prostate cancer (PCa). These methods have facilitated the identification of molecular pathways and biomarkers crucial for the early detection, prognostic evaluation and personalized treatment of PCa. Studies using multi‑omics technologies have elucidated how alterations in gene expression and protein interactions contribute to PCa progression and treatment resistance. Furthermore, the integration of multi‑omics data has been used in the identification of novel therapeutic targets and the development of innovative treatment modalities, such as precision medicine. The evolving landscape of multi‑omics research holds promise for not only deepening the understanding of PCa biology but also for fostering the development of more effective and tailored therapeutic interventions, ultimately improving patient outcomes. The present review aims to synthesize current findings from multi‑omics studies associated with PCa and to assess their implications for the improvement of patient management and therapeutic outcomes. The insights provided may guide future research directions and clinical practices in the fight against PCa.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13495","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of multi‑omics methodologies, encompassing genomics, transcriptomics, proteomics, metabolomics and integrative genomics, has markedly enhanced the understanding of prostate cancer (PCa). These methods have facilitated the identification of molecular pathways and biomarkers crucial for the early detection, prognostic evaluation and personalized treatment of PCa. Studies using multi‑omics technologies have elucidated how alterations in gene expression and protein interactions contribute to PCa progression and treatment resistance. Furthermore, the integration of multi‑omics data has been used in the identification of novel therapeutic targets and the development of innovative treatment modalities, such as precision medicine. The evolving landscape of multi‑omics research holds promise for not only deepening the understanding of PCa biology but also for fostering the development of more effective and tailored therapeutic interventions, ultimately improving patient outcomes. The present review aims to synthesize current findings from multi‑omics studies associated with PCa and to assess their implications for the improvement of patient management and therapeutic outcomes. The insights provided may guide future research directions and clinical practices in the fight against PCa.
期刊介绍:
Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.