Hope H Kean, Alexander Fung, R T Pramod, Jessica Chomik-Morales, Nancy Kanwisher, Evelina Fedorenko
{"title":"Intuitive physical reasoning is not mediated by linguistic nor exclusively domain-general abstract representations.","authors":"Hope H Kean, Alexander Fung, R T Pramod, Jessica Chomik-Morales, Nancy Kanwisher, Evelina Fedorenko","doi":"10.1016/j.neuropsychologia.2025.109125","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to reason about the physical world is a critical tool in the human cognitive toolbox, but the nature of the representations that mediate physical reasoning remains debated. Here, we use fMRI to illuminate this question by investigating the relationship between the physical-reasoning system and two well-characterized systems: a) the domain-general Multiple Demand (MD) system, which supports abstract reasoning, including mathematical and logical reasoning, and b) the language system, which supports linguistic computations and has been hypothesized to mediate some forms of thought. We replicate prior findings of a network of frontal and parietal areas that are robustly engaged by physical reasoning and identify an additional physical-reasoning area in the left frontal cortex, which also houses components of the MD and language systems. Critically, direct comparisons with tasks that target the MD and the language systems reveal that the physical-reasoning system overlaps with the MD system, but is dissociable from it in fine-grained activation patterns, which replicates prior work. Moreover, the physical-reasoning system does not overlap with the language system. These results suggest that physical reasoning does not rely on linguistic representations, nor exclusively on the domain-general abstract reasoning that the MD system supports.</p>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":" ","pages":"109125"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.neuropsychologia.2025.109125","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to reason about the physical world is a critical tool in the human cognitive toolbox, but the nature of the representations that mediate physical reasoning remains debated. Here, we use fMRI to illuminate this question by investigating the relationship between the physical-reasoning system and two well-characterized systems: a) the domain-general Multiple Demand (MD) system, which supports abstract reasoning, including mathematical and logical reasoning, and b) the language system, which supports linguistic computations and has been hypothesized to mediate some forms of thought. We replicate prior findings of a network of frontal and parietal areas that are robustly engaged by physical reasoning and identify an additional physical-reasoning area in the left frontal cortex, which also houses components of the MD and language systems. Critically, direct comparisons with tasks that target the MD and the language systems reveal that the physical-reasoning system overlaps with the MD system, but is dissociable from it in fine-grained activation patterns, which replicates prior work. Moreover, the physical-reasoning system does not overlap with the language system. These results suggest that physical reasoning does not rely on linguistic representations, nor exclusively on the domain-general abstract reasoning that the MD system supports.
期刊介绍:
Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.