Oligodendrocyte Precursor Cell-Specific HMGB1 Knockout Reduces Immune Cell Infiltration and Demyelination in Experimental Autoimmune Encephalomyelitis Models.

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Gyuree Kim, JiHye Seo, Bokyung Kim, Young-Ho Park, Hong Jun Lee, Fuzheng Guo, Dong-Seok Lee
{"title":"Oligodendrocyte Precursor Cell-Specific HMGB1 Knockout Reduces Immune Cell Infiltration and Demyelination in Experimental Autoimmune Encephalomyelitis Models.","authors":"Gyuree Kim, JiHye Seo, Bokyung Kim, Young-Ho Park, Hong Jun Lee, Fuzheng Guo, Dong-Seok Lee","doi":"10.1007/s12264-025-01381-9","DOIUrl":null,"url":null,"abstract":"<p><p>Infiltration and activation of peripheral immune cells are critical in the progression of multiple sclerosis and its experimental animal model, experimental autoimmune encephalomyelitis (EAE). This study investigates the role of high mobility group box 1 (HMGB1) in oligodendrocyte precursor cells (OPCs) in modulating pathogenic T cells infiltrating the central nervous system through the blood-brain barrier (BBB) by using OPC-specific HMGB1 knockout (KO) mice. We found that HMGB1 released from OPCs promotes BBB disruption, subsequently allowing increased immune cell infiltration. The migration of CD4+ T cells isolated from EAE-induced mice was enhanced when co-cultured with OPCs compared to oligodendrocytes (OLs). OPC-specific HMGB1 KO mice exhibited lower BBB permeability and reduced immune cell infiltration into the CNS, leading to less damage to the myelin sheath and mitigated EAE progression. CD4+ T cell migration was also reduced when co-cultured with HMGB1 knock-out OPCs. Our findings reveal that HMGB1 secretion from OPCs is crucial for regulating immune cell infiltration and provides insights into the immunomodulatory function of OPCs in autoimmune diseases.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01381-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Infiltration and activation of peripheral immune cells are critical in the progression of multiple sclerosis and its experimental animal model, experimental autoimmune encephalomyelitis (EAE). This study investigates the role of high mobility group box 1 (HMGB1) in oligodendrocyte precursor cells (OPCs) in modulating pathogenic T cells infiltrating the central nervous system through the blood-brain barrier (BBB) by using OPC-specific HMGB1 knockout (KO) mice. We found that HMGB1 released from OPCs promotes BBB disruption, subsequently allowing increased immune cell infiltration. The migration of CD4+ T cells isolated from EAE-induced mice was enhanced when co-cultured with OPCs compared to oligodendrocytes (OLs). OPC-specific HMGB1 KO mice exhibited lower BBB permeability and reduced immune cell infiltration into the CNS, leading to less damage to the myelin sheath and mitigated EAE progression. CD4+ T cell migration was also reduced when co-cultured with HMGB1 knock-out OPCs. Our findings reveal that HMGB1 secretion from OPCs is crucial for regulating immune cell infiltration and provides insights into the immunomodulatory function of OPCs in autoimmune diseases.

实验性自身免疫性脑脊髓炎模型中少突胶质前细胞特异性HMGB1敲除减少免疫细胞浸润和脱髓鞘
外周免疫细胞的浸润和激活在多发性硬化症及其实验动物模型——实验性自身免疫性脑脊髓炎(EAE)的进展中至关重要。本研究利用opc特异性HMGB1敲除(KO)小鼠,研究了少突胶质前细胞(OPCs)中高迁移率组盒1 (HMGB1)在调节致病性T细胞通过血脑屏障(BBB)浸润中枢神经系统中的作用。我们发现从OPCs释放的HMGB1促进血脑屏障破坏,随后允许增加免疫细胞浸润。与少突胶质细胞(OLs)相比,与OPCs共培养时,eae诱导小鼠分离的CD4+ T细胞的迁移能力增强。opc特异性HMGB1 KO小鼠血脑屏障通透性降低,免疫细胞向中枢神经系统的浸润减少,导致髓鞘损伤减轻,减缓EAE进展。当与HMGB1敲除的OPCs共培养时,CD4+ T细胞迁移也减少。我们的研究结果表明,OPCs分泌HMGB1对调节免疫细胞浸润至关重要,并为OPCs在自身免疫性疾病中的免疫调节功能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信